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PREFACE
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Kushman and Captain Mark Briski, USAF, were the AEDC technical representatives for
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1. INTRODUCTION

For the foreseeable future, the wind tunnel will continue to be & vital tool in the
development of atmospheric vehicles. In the application of data from such facilities to
obtain aireraft performance predictions, wall effects must be accounted for. Procedures
to treat subsonic wall interference have received considerable attention. A view of exist-
ing technology for this speed regime can be obtained from Refs. 1-3. By contrast, the
methodology for the transonic case is much less developed sinece it gives rise to a par-
ticularly difficult environmenti. Some problem areas that contribute to the inaccuracy of
transonic well interference assessment have been summarized by Kemp in Ref. 4. These
are:

1. Nonlinearity of the governing equation at supercriticel flow conditions.

2. Nonlinearity of ventilated wall cross flow boundary conditions and difficulties in pre-
dicting or measuring them.

3. Wind tunnel geometry features, such as finite ventilated wall length, diffuser entry,
and presence of a wake survey rake and its support.

4, Boundary layer on tunnel side walls, which causes the flow to deviate from two-
dimensional test conditions when they are desired.

In addition to these, other viscous effects such as shock—boundary layer interactions are
relevant to interference assessment considerations. Regarding Items 14, sidewall boundary
layers have received attention by Barnwell in Ref. 5. Crossflow boundary conditions and
wall boundary condition simulations have been treated in Refs. 6 and 7.

To deal with the nonlinear effects, computationsl procedures have to be utilized to
treat the interaction of the test article with the walls. Some of these are applied to “clas-
sical” boundary conditions simulating the latter. As a concurrent approach, techniques
incorporating measurements on control surfaces of flow quantities such as the pressure and
velocity components are gaining acceptance. Refs. B-14 illustrate different concepts using
this approach for subsonic and transonic ranges. Discussions of related issues are contained
in Refs. 156 and 16.

In addition to the utility of purely numerical large-scale computationally intensive
methods for trensonic well correction prediction, there is a need for approaches that can
reduce the number of input parameters necessary to compute the correction, shed light
on the physics of the wall interference phenomena, simplify the necessary computations,
and be generalized in three dimensions, as well as unsteady flows. Asymptotic procedures
such as those described in Refs. 17-20 provide such advantages. Furthermore, they can
stimulate valuable interactions with the other methods previously mentioned to suggest
possible improvements, as well as deriving beneficial features from them.

The cricial importance of understanding transonic wall interference and developing
simplified computationally non-intensive models has also occurred in developing drag esti-
mates based on a computational nonlinear area rule algorithm developed at the Rockwell
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Science Center. Figure 1 from Ref. 21 shows the sizeable impact of wall interference char-
acterization in accurately predicting the drag rise of wing-body combinations. In the
figure, various classical models for the wall interaction are compared to eppreximation of
the slotted wall condition corresponding to a slot parameter of approximately % It is seen
that & dramatic improvement in the agreement of theory and experiment can be obtained
with the proper wall simulation.

Because of the importanece of obtaining simplified procedures for transonic wall inter-
ference predictions for three-dimensional models and ada.ptwe wall applications such as
those described in Refs. 22-28, the Rockwell International Science Center team conducted
an effort for Amold Engineering Development Center (AEDC) under Air Force Contract
No. F40600-82-C0005 to develop three—dimensional extensions of its two—dimensional
asymptotic theory of transonic wall interference, described in Ref. 20. Out of this pro-
gram, Rockwell developed theories for low and high aspect ratio configurations. From the
effort summarized in Ref. 29, which was restricted to an analytical investigation, a formu-
lation for the numerical treatment of the low aspect ratio case was obtained. A partial
development of the high aspect ratio theory was also obtained and s described in Ref. 29,

On the basis of this study, a follow—on program has been conducted under the con-
tract, “Asymptotic Theory of Transonic Wind Tunnel Wall Interference”. This effort was
sponsored by AEDC under Contract F40600-84-C0010. One objective of the program was
to fully develop the high aspect ratio theoretical wall interference model for solid wall and
preseure specified boundary conditions (Task 2.0). Another was to numerically implement
both the slender and high aspect ratio theories in the form of computer codes, (Tasks 1.0
and 3.0, respectively).

Based on discussions with AEDC and Calspan personnel during the program, the con-
tract was modified to perform additional studies regarding the application of the asymp-
totic methods to Wind Tunnel Interference/Assessment Correction (WIAC) procedures in
which computational and analytical techniques for interference prediction are augmented
with the use of eppropriate experimental measurements (Task 4.0). The original thrust
of this effort was to combine the asymptotic theory with momentum theorems to obtain
more information on the nature of the interference. However, on the basis of the results
obtained in the theoretical and computational phases of the work, it became evident that
the information from the momentum theorems were naturally present in the asymptotic
developments and that the emphasia should be on exploiting the latter to develop new and
improved WIAC techniques. This motivated the formulation of two Asymptotic Integrated
with Measurement (AIM) techniques in the contract. They are in line with the high aspect
ratio and slender configuration models developed. For the slender case typifying compact
fighter and missile test articles, additional theoretical analyses beyond the original State-
ment of Work were performed to devise asymptotic models of the wall interference when
preasure boundary conditions are prescribed on a wall or interface. This led to a new triple
deck model of the interference flow field.

This report summarizes the work conducted under Tasks 1.0-4.0. Section 2 describes
the theoretical and computational studies conducted under Task 1.0 as well as the supple-
mentary activity related to the pressure interface condition for slender bodies. In Section 3,
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Fig. 1. Comparison of computational Area Rule with experiment.
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the investigations conducted under Tasks 2.0 and 3.0 are discussed. The AIM concepts are
detailed in Section 4. Numerical procedures as well as structure of the codes are outlined
in Sections 2 and 3. This information will complement User’s Guides for both confined
slender and high aspect ratio configuration codes which will be released in the near future.
Results for both slender and high aspect ratio limiting cases are presented. In Sections 5
end 6, conclurions and recommendations for future work are provided.
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, CONFINED SLEND FIGURATIONS

In what follows, the flow over a slender nirplane model in a circular wind tunnel test
gection will be considered. The main contractual activity in this phase was to computa-
tionally solve the wall interference problem (P1} derived in Ref. 20. A schematic of the
arrangement is shown in Fig. 2. The interference problem derived in Ref. 20 is associated
with free jet and solid wall boundary conditions imposed on an interface control surface
(shown in phantom in Fig. 2). For this purpose, a secondary limit of a large test section
radius within the primary Karman Guderley transonic small disturbance limit was used,
Only subsonic freestreams are consmdered in the analysis. In Ref. 29, the flow was shown
to have a “triple deck™ structure. These decks or zones are shown schematically in Fig. 2.

Nezr the axis of symmetry of an equivalent body of revolution having the same stream-
wise distribution of cross-sectional area as the complete nirplane (axis layer), lateral gra-
dients dominate. In Ref. 29, the equivalent body was shown to simulate the interference
of the complete airplane (Area Rule for Interference). Within a “central layer”, if a, the
angle of attack, and the characteristic thickness, 8, are such that a/§ = O(1), as § — 0, the
flow is nearly axisymmetric and can be characterized as a nonlinear line source. Asymp-
totic representations for the central and axis layers were derived in which the first order
terms are those associated with the unconfined flow. The second order corrections of these
regions are due to the wall effects. A third region denotcd s the wall layer was identified,
where the assumption of small wall perturbetions is invalid. Here, other simplifications
apply which represent the slender airplane as a multipole reflected in the walls.

* It was shown that the effect of the walls on the flow field is deduced by solving the
‘second order prablem for the ceniral lager. This consists of the equation of motion, here-
inafier referred o as the “variational equation”, subject to boundary conditions devised
from maiching the wall and azis layers.

In the next section, prior to considering the computational solution of the problem
P1, some extension of the concepts of Ref. 29 will be applied to a generalization of P1
to handle pressure boundary conditions. The numerical solution of this problem was not
attempted within the contractual effort.

2.1 Treatment of Pressure Specified Interface Boundary Conditions

In what follows, the flow structure in the region close to the interface, hereinafter
called the wall layer, will be determined for pressure data specified on the interface. This
provides a modified far field for the variational problem from those appropriate to free
jet and solid wall conditions. The wall layer as well as the other flow regions have been
identified in Fig. 2 of Ref. 29 and the inset of Fig. 2. Although the pressure boundary
condition theory was called out as a contractual requirement in connection only with
the high aspect ratio code associated with Task 3.0, the contractor deemed it useful to
develop a corresponding theory for the slender body code written under Task 1.0 in the
Work Statement of the contract. This sofiware presently handles solid wall boundary



AEDC-TR-91-24

conditions. The formulation of the computational problem for pressure specified boundary
conditions will be given in which the free jet conditions are a special case. This discussion
in this section will be restricted to axially symmetric pressure data on the interface. This
limitation will be removed in a subsequent section.

Referring to Fig. 2, the orientation of a slender model as related to a eylindrical contral
surface delineated in the figure is shown. The set up is similar to that described in Ref. 29.
However, a pressure boundary condition is to be specified on the cylindrical interface Sc.
These pressures are assumed to be obtained by suitable messurements such as from static
probes and rails. The pressure distribution is also considered to be an arbitrary function of
the streamwise coordinate z and in a later section the angle variable §. Such distributions
can be nssociated with the following effects:

e Wall boundary layers

¢ Noncircular cross section walls such as octagonal and rectangular test sections
¢ Yaw

e Asymmetric control surface deflections.

Moteover, the pressure specified formulation is relevant to the two variable method,
adaptive wall applications, and our recently developed combined asymptotic and experi-
mental interference prediction (AIM) method.

2.1.1 KG Theory

For a self—contained account, some of the analytical deveiopments which are common
to the solid wall analysis will be repeated here. The viewpoint will be similar to the solid
wall case, i.e., a secondary approximation of large radius A of the control surface (shown
schematically in Fig. 2) within the basic approximations of the Karman Guderley (KG)
amall disturbance model. Thus, the body is represented as the surface

r=6F(z,0) , (2-1)

within the coordinate system indicated in Fig. 2, with § = the characteristic thickness
ratio, and overbars representing dimensional quantities.

The asymptotic expansion of the velocity potential & in terms of the freestream speed

Uis
‘r -
5=5+82¢(=,F,9;K,H,A)+--- . (2-2)
which holds for the KG outer limit,
@, F=6r,0,K=(1—-M3)/6 H=héfc,A=aff fixedas 6§ = 0, (2-3)

where M., = freestream Mach number, X = KG similarity parameter, H = scaled height
of control surface, A = incidence parameter. For (2 — 3), the ideas of Ref. 29 and the
pressure formula valid on the interface,

Cp, = —-26% 4, (2—4)
give the following (primary) KG formulation:
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2.1.2 Problem Q:
(K = (7+1)8e)bee + %(Fw), + Fi,qs.. =0 (2 - 5a)
E:‘-dﬁﬁ% , 0<z<l (2 — bb)
pe(z,0)=0 , z>1 (2 - 5¢)
d:(z,H,8) = f:(2,0;H) = —(L'-',,/'2o52 (2 - b5d)
¢(z, H,8) = f(z,6; H) (2 - 5d')

Here, $(z) = streamwise area progression of the test article, (7 ) = dimensional cross
sectional area, ¥ = dimensional coordinate in freestream dircciicn, and §(z) = 5(Z )/§*L?,
where L is the body length. Problem Q above represents a generalization of those discussed
in Ref. 20 because of the fully three—dimensional nature of the equation of motion (2 — 5a)
and in accord with the previous remarks, the more generel nature of the external conditions.
The latter are given by either (2 — 5d) or (2 — &d").

2.1.3 Large H Theory

The secondary expansions mssociated with H — oo will now be considered. It is
anticipated thac the structure of the various layers, i.e., Axis, Central, ana Wall layers
showa ia Fig, 2, will resemble those for solid walls. Accordingly, these represcatations are:

2.1.4 Central Layer

¢ = do(z,¥) + #1{2(H)¢'112($| 7, 0) + g1 (H)ps(2,7,0) + - -+ (2 —6a)
K=K, +wn(H)K] +::- (2 —6b)
A=Ay +5{(H)A +--- (2 - 6¢c)
which hold in the central limit
z,F fixed a8 H — o

These lead to the following generalized hierarchy of approximate equations:

2.1.5 Free Field Approximation

(K3 = Gy + b Yo, + 3(Fdur), =0 (2~7a)
2.1.8 Variational Equations

(K3 — (0 + D60, Y1 /50s ~ (14 Doubifan, + 3Gha) s+ grtim =0 (2=T0)
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Fig. 2. Control surface in tunnel.
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(K§ - (7 + 1o, )41, — (7 + L)1, fo.. + -1:(""¢1;)- + 71;¢lu ==Kyde,, (2—Tc)

where 1 (H) = g1 (H) to keep the forcing term in (2 — 7c), and to address the possibility of
adjusting K¢ as 8 Mach number correction to achieve interference—free flow. The significant
complication of Egs. (2—7b) and (2 — 7c) over their solid wall counterparts is the presence
of the terms involving # derivatives. On the other hand, a substantial simplification from
the Problem Q is the allowability of factorization and superposition due to the linearity of
these equations. As will be seen, the angular dependence of the far fields for these problems
involve simple factors such as cos §, cos 24, etc. It is envisioned that this dependence can be
factored out, e.g., by allowing ¢ = é1(z, 7} cos 8, which gives a two—dimensicnal equation
for ¢;. Also to be confirmed by matching is the assertion that the far field for ¢y has a
similar structure to that given in Ref. 29,

2.1.7 Wall Layer
The appropriate representation is assumed to be
¢ = EO{H)‘PU (3*1 I"*, 9) + 51]!(3)591/2 +ae1+--- (2 - 8“)
for the wall layer limit,

st=z/H , P'=¢/F , fixedasH— o0 . (2 — 8b)

Substitution of (2 — 8a) into the KG formulation gives

Oleo) : Llpo] =0 (2 —9a)
Ofer2) : Lipapl (2-9%)
O(e, &/H) : L[\’l] =((v+ ea,y — K;)‘a’O,i.r ’ (2 —9¢)
where
L=Kigg+bh . Ars B ( aft) * 1*;

2.1.8 Behavior of g near Origin

2
As in the solid wall case, if Rf = J(ﬁ) +72/H, the source-like behavior,

W f 1 -
At TR 2-10)

is anticipated.
From (2 — 5d'), the similarity form,

fe 0B = £i:10) 2-1)
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is appropriate, and leads to the boundary conditions

po(z',1,8) = f(<,8) = f(z,0 + 2n) (2 — 12a)
e1a(z',1,0) =0 . (2 —12b)
i§
At gt T () + s
Xt =3t/ /Ks
Then (2 — 10) implies
Atgq \S/(I%(f) (") . (2 - 13)

With the following exponential Fourier transform pair

00 , t
Po = f e” X ppd Xt
—oo _

O
o= [t

the boundary velue problem for §, corresponding to (2 — 10), (2 —12a) end (2-13) is

L= (85 -#) 7 =0 (2~ 14a)
gy _ 1 SQ1) -

b o = 5 JKE (2-149)

7o(1,0) = FO.8) =FO +2mk) . (2-14¢)

In contrast to the solid wall case, the decomposition of the solution into the fundamental
golution My and a part M; that is bounded at X = oo as indicated in Eqs. (12) of
Ref. 29 is not required since with the Dirichlet conditions, there can be mass flow through
the interface to eliminate the solid wall source flow division at upstream and downstream
infinity. The eigenfunction expansion solving (2 — 14} is

By = AoKo(kr!) + Bolo(kr?) + i In(kr'}{Bn cosn8 + Cysinnd} (2 - 15)

n=1

where Ky and I,, are Bessel functions, the periodicity condition in (2 — 14¢) has been used
to determine the eigenvalues A, = n, n = 0,1,2,---, and {2 — 14b) hes been utilized to
eliminate the K, for n > 0.

10
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Application of (2 — 14c) and inversion gives finally,

o=t [ kXTdk{ 2L [ ko) - (o)

Ty(k)
I(krt) -
+5® f(ﬂ.k)de} e
In(krt) Ir _ .
? ,,Zl./ I..(k) ‘ﬂ’fo F(&,%) cosn(0 - 6')de'

The integrals in {2 — 16) are convergent since the Bessel ratios decay exponentially as
k — oo and are analytic as k — 0.

As indicated previously, for the anzalysis in this section, the 8 variation will be sup-
pressed. This may be realistic for many practical applizations for nearly circular test sec-
tions and interfaces in the intermediate region of slender body theory discussed in Ref. 30.
For convenience, the f distribution has been assumed symmetricin X, i.e., f(X) = f{—X),
to oblain (2 — 16).* Therein, the exponential transforms have been expressed in terms
of cosine integrals. The analysis can be readily generalized to handle unsymmetrical f
distributions.

2.1,9 Asvmptotic Representation of (2 — 16) as Rt — 0

To obtain the required representation, the following integrals are considered:

o= / ” con kX! I}(E‘;))dk f o 7(6,k)dp (2 - 17a)
_ [T [RENER) ] o kxt _
I = j; { yA 7 Ko(k )} kX tdk (2 —17b)
-] oo r i
Ty = n2=:1 A cosk trni'::k})dk [ F(# k) cosn(8~-8)d8' . (2—17¢)

Consistent with the assumption of axisymmetric interface pressures, 73 will not be consid-
ered here. By approximating fo(kr!) and cos kXt as R! — 0, and ierm by term integration
of the series obtained, the following approximation for ¢p results:

P = "% + (Ao + Bo)+ (Co + Do) R':‘Pz(cosw)

(2 - 180)
+o(=") ’

* This restriction will be removed in Section 2.2.

1
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where
_5Q) [ Ko(k)dk
A= Tew o ho(®) (2189
1% de o : )
Bo=— fo oo fo FOXY) cos kXTX (2 - 18¢)
o= -1 fw i’(ik’;/“ F(X") cos kX1ax? (2 — 18d)
=5(1) [T KKulE) ) (2 - 18¢)

syl A A (5
Here, w i9 the scaled analogue of the polar angle defined in Fig, 2 ie., w = ene -} Xt/Rt
and P;(cosw) is a Legendre polynomial.

The cenrtants given in (2 — 18b){2 — 18e) are all given by convergent integrals. In
particular, Ba converges if (k) is bounded as [k| — oc, and even under milder conditions
on f. This results from the potent exponential decay of Iy. No problem is encountered as
k — 0 since the integrand 15 analytic at that point.

The terms involving By and Cyp give the effect of the pressure boundary condition.

2.1.10 Matching

For purposes of matching, the following asymptotic approximations for the wall layer
and central region are appropriate:

chnl:rl.l 9 -AO Bl] cogw ﬂ i _
—y - r+6 { Y m + R (cos 3w — cosw) + \/IF}F ——=——P;(cos w)} o1
+ #1!2(H)¢1!2 + (ang.Pz(COSW) + oy Reosw + &2) e

as B — oo

"““—:H’{ S [__L. 4 (A + Bo) + (Co +Do)R" Pafcosw) + -- ]}

VK ~arR'

1
'Y + (Co + 'Do)Rt]

Py(cosw C
+ e {C[—% +Co +Do] + Rtu‘

+e as Rt =0

+ €12 Bocosw [

)

(2 — 20)
where A, By, Co, and A are constants that have been previously defined in Ref. 29 with

a corrected value for Cp being %ﬁg%%l.
1]

12
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Preliminary matching considerations govern the selection of the various elements com-
prising (2 — 19) and (2 — 20). The ¢, coefficient of u; represents a harmonic solution of
(2 — 7c). The response to the nonlinear forcing terms {y + 1)do, ¢1,, and (7 + 1)¢1, do..
are decaying terms as R — co that are higher order to the order of the matching and can
be neglected. Regarding (2 —20), ¢;/3 and ¢, the coefficients of €; ;3 and ¢, respectively,
consist partially of X* derivatives of g, such that the multipole expansion has primary
singularities which are source, doublet, and quadrupole forms with their appropriate re-
flections. Thus, the reflection of the doublet is an X derivative of the sources, and the
quadrupole has the same relationship to the doublet.

For matching Eqs. (2 — 19) and (2 — 20) are written in the intermediate variable

R,=-’§ (2~ 21)

which is held fixed as H — oo. The gauge function 7 is an order class intermediate between
1 and H ns H — o0, This is expressed symbolically as

l<<n(H)Y<< H . (2-22)

Thus, WIH_) —0as H — oo, and § — 0 as H — o0. For axiel symmetry of the interface
aressures, the matching proeess is almost identical to that discussed in Ref. 29. The only
difference will be the redefinition of certain constants associated with the streamwise inte-
grals of the specified pressure data as well as the switchback lerms. For understanding of
basic issues related to the extension to non—axisymmetric interface pressures, the matching
is diagrammed in Fig. 3.

Referring to the figure, the various labeled terms denoted by the circles give the
following matchings:

O 0@ =2a=-T o=y
o @D sap=4

@
@ — @ matched

@O e G sa=g . C=—A
@ - @ >mp=% » $ya=>+5o
- @ 2>m=55 » ao=C+Do

As will be seen in the next section, the non-sxially symmetric case requires additional
terms in the wall, central, and axis layers to deal with the effect of the higher harmonics.

13
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) Lral 2 — V] _A_ﬂ_ BD Cll _ APQ(CIHU)
c!t; > =148 deenrn =z +8 {FJR., + __H'}!n: + _',:na {cos Iw — cosw) + "_—,—Kaq:n:

6.1 6.3
+m ((!.'DH)L}: +m{H) e I%Pz(cos 6) + aypH, cosw -Iﬁ}

2
ﬁ;;_n =+ =2 +6’{q(ﬂ)% N 2.3 & (G +'D°)%R=Pg(wsw) + ...]
n%j
A

Fig. 3. Matching of central and wall regions for axially symmetric interface pressures.

14
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The matching of the central layer and the axis layer proceeds &long similar lines to
that given in Ref. 29. All that is required is the essential result for the boundary condition,
which is

¢1,(z,0) =0 . (2-23)

The cxpression for the interference pressure remains the same as that given in Ref. 29.
However, there is an implicit dependence on the interface pressure data through the far
field influence of the terms involving the conatants By and Cp defined in (2 — 18¢c) and
(2 — 18d). Also, the flux of streamwise momentum of the interference field through the
interface must be considered in the calculaiion of the interference drag. The implicit
dependence on the interface pressure data is shown in the following eltered problem P1
denoted P2 for the interference potential in the central region ¢;.

P2

(K3 — (v + 1)d0.] 61,0 = (1 + Do, b1, + 2 Gbrs)s = —Kibo.  (2-24a)
¢1,(,0) =0 (2 — 24b)
&1 2aoR2Pg(cosw)+a1Rmsw+ag as R — oo (2 — 24¢)

where
Qg = Cn + ‘Du (2 - 2441)
] = Buao (2 - 248)
2=-8?I-:.—:}=ﬂoc . (2—24f)

For the free jet case, Cp = 0 in (2 — 24d) and By = 0 in Fig. 3. Sclid wall conditions are
modeled by making ap = b = b S(1)/+/ K3, with o = BxBoby, with by = .063409*.

2.1.11 Discussion

Because of the relationship of P1 to P2, the computational algorithm which has been
developed for the solid wall case can be used to solve P2 with corrections of the indicated
constants and the post-processing subroutine DRAG!I to account for the flux of streamwise
momentum through the interface. Note here that the effect of oz in (2 — 24c) can be
neglected.

* The determination of this value is discussed in Section 2.12.

15
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2.2 Generalization to Angular and Unsymmetrical Variations

Summary
In this section, the pressure boundary condition asymptotic analysis given in Sec-

tion 2.1 is extended to handle angular interface and unsymmetrical variations of measured
pressure,

Centrel Layer
With the generalized angular variation at the interface, (2 - 6a) ic anticipated to be
modified as

6 = o (2,F)+p12(H )12 (2, 7, 0) +pa7a (a4 (2, 7, 0) + 1 (H )1 (2, 7, 8) +- - (2 - 25)

As compared to (2—8a), (2—25) contains an extra term (indicated by 3/4 subscripts). This
insertion is required by matching considerations assaciated with the more general class of
intarfoce pressure distributions involving angular and asymmetric streamwise variations.

The analysis and results are such that Egs. (2 — 3) to (2 — 6) remain unchanged.
Reflecting the inore general interface distribution the expression for wq becomes

S1) (~ = 1 .
- -.rr’i/?fﬁ( Q,)+%+m2(qnmna+ P, sinn) (2 —26a)

n=1
where ( 1)
x °°.rg kr Kn(k] . 1 _
h = f_ N A X dk (2 —~ 26b)
Gp = j ~ Ko (k) X" dk (2 — 26¢)
Qn = j_ K L If;:))dk HODERL (2 — 26d)
P, = f_ : e'*-"*I'}fg))dk 7(8,k)sinndd . (2 — 26¢)

Upon expanding the integrands in (2 — 26) for emall R, and with considerable algebraic
manipulation, the asymptotic expansions of the integrals can be obtained. The methodol-
ogy exemplified in Ref. 29 involves expansion of the Bessel functions for small rt and the

¢"* X' Lernel for small Xt and gives a series that can be integrated term by term. These
mtegmla are convergent for the ray limits (R — 0, @ fixed) of interest.

16
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Collecting results, the desired expansion of g is

po = %’ +Ao+Bo+An1X1

+ Eort cos 8+ Fort sin @4+ X1 | Epar? cos B+ Forrtsind
‘_—\,‘—-’ \q—i Ny s o iy - -’
¥ z Xty Xtz (2 - 27“)

Gar! cos 20 + ‘Hor" sin 24
LAy Sl —_
pi—a2 Yyt

(Co + Do) R Pa(cosw) ++-+

where the ter.ns shown under those in (2— 27a) are listed to indicate their correspondence
with splerical harmonics and the spherical cocrdinates are as shown in Fig,. 4.

BCE0443

L

Fig. 4. Spherical coordinates.

From the asymptotic expansions, the constants in (2 — 27a) are:

___sw) )
Aw =~ TR (2 — 27b)

_ S(].) mKu(k) __1_ o0 d_k I _
Ag = 202 JKg Jo  To(K) dt |, Bo= el B A A fr(0,k)d8  (2—2Tc)
Aoy L [* kb [ f1(8, k)dk (2 - 27d)

T J_ o To(k) Jo
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1 [™ Kk - _ © Lk _
£°=mﬂ“f_m'mk}fo foosbdh , Fo= oo T8 Jo " Frinsat
(2-273)
K2dk _ © [k
Re cosldd , T Re / sin 8d8
j I1(k) o= Il(k)
(2—27f)
5(1) ,[ K Ko(k) 1 f” kidk 27—
_ L py= s [ EdE B (227
T JRE Ty V=8 L TR ), 2E @)
1 © k2dE [T _ k‘J.‘.- .
°°-m"°f_mmn oot , o= -gzte [ s [ Fonani
(2 - 27h)
Matchin_g

Using the intermediate limit described in Section 2.1.10, matching of the central and
wall regions is schematically indicated in Fig. 5 in which both representations are written
in terms of the intermediate variable R, defined in Section 2.1.10. It should be noted that
nonlinear effects are associated with Poisson equation forcing terms such as ¢;,¢0,, in
19 —7z). The Poisson form is associated with R — oo ray limit of the central region flow.
In Fig. 4 Q1) js a particular solution of the equation

o \ g e 7— = COBW (2 — 28a)

1 (d . doW Q)
(dw dw ) + sin® w

and §(? ia the solution of

1 (d , dn(21)+,n(=l _ 8Py(cosw) + 2Pi(cosw)

_— sinw - =
sinw sin® w B

= — (2 — 28b)

As indicated in Section 2.1.10, the matching of the central and axis layers proceeds
along similar lines to that discussed in Ref. 29.

All that is required is the essential result for the boundary condition, which is

¢$1,(2,0) =0

The expression for the interference pressure remains the same as that given in Ref. 29.
However, there is an implicit dependence on the interface pressure date through the far
field influence of the terms involving the constants defined in (2 — 27¢) to (2 — 27h). Also,
the flux of streamwise momentum of the interference field through the interface must be
considered in the calculation of the interference drag. The implicit dependence on the
interface pressure data is shown in the following altered problem P1 denoted P2 for the
interference potential in the central region ¢;.
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Beonteal _ z Ap By conw Ca . _ Ag )
== +4 { [[”-H-: + WA + '—’,m‘(toqﬂw casw) + —\/EE'I’RJ Pafcosw)

Pr{cosw)
I,

+ —-—[ A ‘R':P_, v Yy I;i'j o N F A+ 3P "c'nhu.-lil:lw(ﬂ” con B 4| Foy mi 19)

X l.|.'{,1t'll" i 4 “in 2814 Aoy, sinw eon

+ -I!;-;ﬂ,“ ?}T [.4 oty vorw - Euy R sinew con @ 4 Funt sinwsind 4oy +

+ I::R,‘ giliYy sy

1 ot
tm 8| + 2((
H :'_n_':.

+ D [C (__I_Pg(cnsu)

" TR
+"°‘“‘"’$°"’“ — 2a50(Co D.,)n“!(u)+n"’(£mcos9+2}‘n.sino)]}==+5’¢....

Fig. 5. General case of matching of centra] region and wall layers.
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P2:

(K5 — (v + Do, ] b1,, ~ (7 + 1)do. 01, + %(%1,),., = —K? o, (2 — 29a)

$1,(2,0) =0 (2 — 295)

@

¢~ R? {EPg(cos w) + coswsinew €11 €088 + Foy sin

@

+ sin? w jl;cos 20 + Ay sin 23 }

(2 — 29¢)
+R{A_100sw+sinu r.A_ssinﬂ+A_scns§) }
+Ad2+--- asR—o
where by Fig. 5, with B and € defined in Ref. 29
Ao =Cy + Dy {2 — 29d)
A = 2BA; (2 ~ 29¢)
Az =2CC, =2B(Co + D) (2 —29f)
A3 =G, (2 —29g)
A =H (2 — 29h)
As = For (2 - 29i)
As =& . (2 - 295)

2.2.1 Discussion

The problem (2 — 29a)~(2 — 29¢) is the generalization of the Problem P2 given in Sec-
tion 2.1.10 accounting for asymmetries in the streamwise distribution of the interface pres-
sures as well as angular § variations. These effects are given by the terms marked as (@
- @ in (2 —29¢). They represent averages of the early harmonics which to this order i
all that the far field is sensitive to. The specialization to the free jet case is obiained by
setting Dy = go = Ho = €91 = Fo1 = 0 in Eqgs. (2 - 29).

2.3 Shock Jump Conditions

An important element to be considered in the numerical solution of the Problem P1
referred to in the previous sections is the satisfaction of the shock jump conditions, For
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the free field case, these relations are satisfied by the divergence or conservation form
of the Karman Guderley small disturbance equation. These give the Rankine Hugoniot
jump conditions, They are satisfied using type sensitive shock capturing schemes such as
those originally developed by Murman and Cole in Ref. 31. On the other hand, the wall
interference corrections related to the Problem P1 have to be satisfied by use of explicit
relations. These have been derived for the high aspect ratio trensonic lifting line theory
fo.mulated in Ref. 32. These relations will be derived for axisymmetric Jow in this section.

Referring to Fig. 6, conditions acrogs the shock front denctea as S will be discussed.
This rurface is giver by

S=z-g(®=0 , (2 - 30)
where # = §r, and consistent with the Problem P1 delineated in Ref. 29, axial symmetry is
assuwned. The Problemn P1 describes the wall interference flow away from the walls on the

xis of symmetry of a cylindrical test section. The velocity potential in this zone, denotcd
by &, is given by the asymptotic expansion

8C84-25502
T
o~ X
§_  x7ov SHOCK
r
——
U
3
> SHOCK sunmrk
K

Fig. 6. Orientation of shock surfaces.

%:.’c-{-ﬁz {éo(z,F)+%+%qﬁ1(:ﬁF)+---} , 2-3)

where U is the freestream speed, the ¢; are perturbation potentials, aj is a constant, H is
the wall height in units of the body length, and & is the confined body’s thickness ratio.
The secondary expansion in the braces in (2 — 81) is an approximation for the perturba-
tion potential ¢ which is governed by the Karman Guderley transonic small disturbance
equation (2 — 5a), with ;% assumed zero.

Equation (2 — 6a) can be written in the divergence form,

por={Ko. - L5} +1Gom=0 (2-12)
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where subscripts denote partial differentiation. Denocting the transverse veloclty vector as
7 = vl (u = ¢,.) the 7 derivative term in (2 — 32) can be written as v + ¥, where V. is
the cross flow divergence.

" 'The integral form of (2 — 32), applied to the infinitesimal thickness (= €) volume V

shown in Fig. 6is
jj L{$}2xidFfdz =0 |,
v

and the divergence theorem gives rise to the flux form

{[Ku—7;1u2]+{ﬁ]-§}2ﬁdf-=0 , (2 - 38)

where [f] = iimne..o{ f(z,9+€)— (2.9 - e)}, u = ¢, and 7 is a unit vector normal o S.
Since (2 — 33) holds for an arbitrary area, the integrand must be zero,

[Ku—7;1u2]+["]-%=0 . (2—-34)

Now ;
vSs _ r-8¢'(F)ls

T 1vs[T ito

where 7 is the unit vector in the z direction and 1; that in the # direction. Substituting
into (2 — 34), this gives

(2 -35)

[K 7;1 —g'[v] =0 . (2-30)

By virtue of conservation of tangential momentum across the shock, the perturbation of
the velocity vector § is normal to the shock surface. This perturbation velocity is given by

g -I-J'U' = %7+ v,
On the basis of tangential momentum conservation,
(§-U)xVSs8=0 ,
which gives .
[v] = —[u]s'(F) . (2 — 85)
Eliminating ¢’ from (2 — 34') using (2 — 35) gives

[Ku - (_"%_1_)1;2] [] + [ =0 . (2 — 36)
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Since tangential momentum is conserved, the tangential velocity component to the
shock is continuous across it. Upon tangential integration, and disposing of an unessential
constant, the following relation is obtained

[¢]=0 . (2 — 37)

Equations (2 — 36) and (2 — 37) lead upon substitution of the asymptotics into the jump
relations for the approximase quantities appearing in (2 — 31). To obtain & determinate
set of quantities, the shock’s representaiion is assumed to be in the same form as that for

¢, ie., ) )
g = gofF) + FQIIE(F) gt (2 -38)

Denoting f as a quentity of interest which has the same asymptotic form as $. on the basis
of {2 — 38} and Taylor's expanuiou,
1
f(#.9) =fo(z,90) + —(fuz(-'f-',gu) + 9172 0.(2, 90))

gu fu..(-“ayn) + i (f;(:c 00) + 91.fo, (%, 90)) (2-39)

+...

By virtue of (2 — 39), substitution of the expansion (2 — 31) into (2 — 36) gives the approx-
imate shock relations which are:

mn:[(x-*ilw)%}+mr=o (2 — 40a)

o] [ = L2 48] + ] [ = (1 -+ Do)

+ 2{ou] [0] = -9-{ o] [(k — (1 + Do),

“u oo

(2 — 40b)

T+
+ [Kuo 2

+ 2] w.]}

where u; = ¢;, and v; = ¢;, where { is equal to 0,1, The quantity g,y can be shown to
vanish on the basis of (2 — 37) which with (2 — 39) leads to the additional set of relations:

O(1) : [4a] =0 (2 - 41a)

O(H™®) : [$1]) = —a1{¢.] - (2 —41b)

It should be noted that the O{(H 1), O(H ~?) equations obtained in the process leading to
Eqgs. (2 — 40) are vacuous.
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Equations (2 — 40) and a vorticity relationship to be derived in the next section
complete the formulation necessary for the computational solution.

2.4  Shock Conservation Laws for Wall Correction Flow

In addition to the jump relations derived in Section 2.3, a useful conservation law
can be derived for use in the numerical solutions. In analogy to the free field large aspect
ratio case discussed in Ref. 32, this law ‘mil be obtained using the divergence theorem.
Considering the region shown in Fig. 7, the divergence form of (2 — 7c) (with 3 = 0 and
dropping the stars on the K’s) is

{E1go, + Kopr, — (1 + Voo d1. ), + =(7é1,), =0
r

or
V- (Kigo, + Kopr, — (¥ + 1jdo, $1., Kos,) =0 , (2-42)

where V- refers to the divergence operator in the 2, # ooonliinate system in which 7 = +/Ko#.
From (2 — 42}, :

f.[s'(Kl¢°' — w1, Kod1,) - idS E

where w = (y + 1)¢o, — Ko, S represents the surface of revolution consisting of the sphere
Sr, R = Ry, the cut S around £ = 0, Sp around the shock or shocks, and 7 is the unit
normal to the shock surface.

Now, since ¢1,(z,0) =0,

[, =] [

where I is the unit vector in the # direction. Also, [ f;  can be shown to vanish to the
order of approximation considered by virtue of Eq. (20b) in Ref. 29. From the previous
section, with the first approximation of the shock shape given by

X = Giy(F)
[¢0F] — it
[¢D.] - Gﬂ(r) LI

where [ ] denotes the jump of the indicated quantity across the shocks and

"= —F—
V31t G3(f)
‘ the desired conservation law is

jS ., {K, [¢0.] = [ws.] - %@}r =0 , (2 — 43)
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Fig. 7. Regions appropriate to shock conservation laws.
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where Sy is the shock surface.

2.5 Repularization of the Problem for the Correction Potential ¢,

To avoid the singularity at oo, the problem P1 in Ref; 29 is transformoed by subtracting
off the far field for ¢;. Accordingly, the variable ¢, is introduced in P1, where

$r=¢1—brr . (2-44)

Here,

M[¢] = (Ko — (7 + 1)do, )81, — (¥ + 1)d0,. 01, + -’1;(1'"'4)1,); =-Kids,, (2-45a)

and
'1‘5_13[1’951, =0 . (2 — 45b)
Noting that (for solid walls)
$1 = ppp = By R? Py(cosw) + BrbgBoR cosw (2 — 45¢)
m .
- 2 g '
R == -I—{—g- + 72 —pa
and
72
brr =t (xz E) +8rboBoX (2 - 46)
where s(1) :
f |
= —==kby
vEKo

1 oo oo
4xBy = —S(1) + f S(z)ds + 7(v +1) f ds f P42 df
0 -20 o
w = polar angle defined in Fig. 1

S(z) = model cross sectional area

R = polar radius defined in Fig. 1 .’
From (2 — 44) and (2 — 46), (2 — 45a) and (2 — 45b) become

M [‘5‘] - w +¢o..{('r+ 1) (25;,: + 8%") -—K1} (2 —47a)

lim $1,=0 . (2 — 470)
$1 —+0as R— oo (2 —47¢)
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where R = 6R.

The slender body interference code will use the regularized form represented by Equa-
tiona (2 — 47).

2.6 Basic Code Modules

Figures 8 show flow charts which give an overview of the interaction of the functional
modules to be used in the design of the wall interference code under Task 1.0. The
preprocessor ATF sets up the grid and inputs other parameters through the subroutines
INITIA, INPUT. The input geornetry data is read in from the disk file. The solver STINT25
has primary subprograms deuoted as RELAX1, OUTFNL, SONIC, DRAG1 used to solve
the zeroth order flow problem and RELAXV1, OUTFNL1, and DRAG1 for the variational
problem for ¢;. RELAX1 and RELAXYV1 are modules which respectively are the prinapal
successive line overrelaxation routines which serve the purpose of solving the tridiagonal
system for the free field and the interference problems. The tridiagonal solver is denoted as
TRID. RELAX] and RELAXV1 include special treatment of far field, internal, boundary,
and shock points with appropriate type sensitive switches. SONIC determines subsonic
and supersonic zones, and QUTFNL and OUTFNLI provide the basic flow and interference
pressure fields aa well as the quantities g; defined in Ref. 20 necessary to compute free field
and interference drags. These are computed in DRAG and DRAGI, respectively. The
relationship of the flow solving modules is shown in Figs. 8.

2.7 Upstream and Downstream Far Fields

For slender test articles that are sting mounted inside solid walls, the flow at great
distances from the model behaves as a confined source in aceord with the analyses given in
the previous sections. Referring to the cylindrical coordinate system indicated in Fig. 9,
far field behaviors were worked out in certain “ray limits” in which if R = v2? 4 72 and
cosw = z/R, R~ 0 for # fixed. The case w =0, or 7, i.e,, z — o0 however is degenerate
and requires special treatment and had not been analyzed.

For a properly posed numerical simulation of the finite height case, the structure of
this flow must be properly modeled. This can be achieved using the Divergence Theorem.

If z is the usual dimensionless coordinate in the freestream direction depicted in Fig. 9,
then the transonic small disturbance formulation gives the following equation of motion

Ad=dxx + %(%;),—, = (TV/-";—{I)¢x¢xx (2 —48)

where K = (1=M2)/6*, My, = freestream Mach number, ¢ is the perturbation potential,
and X = z/+/K. The slender body boundary condition is
. .8  S'(=z)
il‘l—r&ll T T2
where 5(z) is the cross sectional area distribution for 0 € r < 1, and 5'(z) is without
great loss of generality assumed zero for 1 < z < oo, (constant diameter sting).

(2 - 49)
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ATRAX.DAT
HT PAR.DAT
INPUT AND
CONTROL FILES

ATF
INPUT
TO SOLVERS

NPUT
seTsuP |
GRID ,
PARAMETERS)| |

[

INITIA

Iy ,

GX GRID QY GRID
{SETUP {SET UP

X GRID) i GRID) : SMOOTH DATA)

Fig. 8. Flow chart for preprocessor and solver.
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SOLINP. DAT
ATFBOPT. DAT
ATFBOPTV. DAT
¥, T VECTORS, DX,GAMM1, GAM,
PL, IMAX, JMAX, PHI, PLS, SBODY,
PLS1, TAU, ETC.

Y

STINT25
MAIN DRIVER

[

RELAX), RELAXNVY
{SOLVE DIFFERENCE
EGS) FOR O™ AND
PERTURBATION FLOW

[}

COMPUTE
COEFFICIENTS

P

Fig. 8. Flow chart for preprocessor and solver (continued). N in the notation STINTN denotes
the Nth version of the main driver.
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Fig. 8. Flow chart for preprocessor and solver (concluded).
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A control cylinder is considered consisting of the walls (S#), an internal surface bound-
ing the model near the axis, (5.}, and the inflow and outflow faces ($_o) 8nd Soo, respec-
tively. Accounting for the impermeability of the walls expressed as

ol
b a-5

the divergence theorem when applied to (2 — 48) gives

1099 =] forarrane 5= [ 7 [ {0 o

(2-51)
where V denotes the volume of the control cylinder. Evaluating the terms in (2 — 51),
8 ., . [0, . [SG) . _
Lands_y%o dafn aFrdX—mr/n Hax=s0) . @-52)
From (2 — 503,
8¢
. dS=0 . (2-53
-/SH an r=H )

For & slender configuration, we assert that as in the subsonic case, the lift effect produces
a Trefftz plane (z = oo) flow component that can be represented as an infinitesimal span
vortex pair refected in the walls, This pair is the Trefftz plane projection of the trailing
vortex- system from the body. Superposed on this flow is an outflow due to the source
effect. A similar outflow occurs at * = —co. Accordingly, we are led to the asymptotic
inflow and outflow conditions

¢~ Crpz+ F(§,2) as T — oo (2 - 54a)
(ﬁ:Fsinﬂ)
Z=fcosl
¢~ —Crpz as T — —00 , (2 —54b)

where f(f,#) is related to the lift, and the constant factor Crr appears in the manner
indicated in order to preserve the anticipated symmetry of the apparent source flow from
the sting-mounted, finite base area model. In this connection, it is important to note that
Eqs. (2 - 54) are exact solutions to the nonlinear small disturbance equation (2—48). This
is true even for f(j,Z), since it aatisfies cross flow Laplace’s equation. It should be noted
that the inflow and outflow conditions to be specified at x = too are independent of the
form of f.

From (2 — 54), it is clear then that

f j 8% 45 = 2xCppH® . (2 - 55)
ScotS-m on

k)|
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Fig. 9. Model confined by solid cylindrical walls and control volume.

The last term to be evaluated in {2 — 51) is the right hand side, which is

H oo
2% '/0 FdF o (;’;I_;);f(ﬁ) (7+1) f 7 {#%(c0,7) — ¢%(—00,)} dF

which vanishes by virtue of (2 — 54), as a milder condition of symmetry of the axial
component of the far upstream and downstream flow. From this, as well as (2 — 51)
to (2 — 55), it follows that the inflow and outflow conditions are,

as z —+ too , (2 — 56)

i.e., the apparent source strength is proportional to the I:;ody bese area. Equation (2 — 56)
is used in the numerical simulation of the fow field.

A complete asymptotic expansion based on the eigenfunction expansion for a confined
point source given in Ref. 29 can be used to obtain refinement of (2 — 56) and treat the
transonic case. From Green’s theorem and the properties of the Green’s function G, the
perturbation potential ¢ in the confined moompress:ble solid wall circular cross section
case is

R S L R e~2olz=8 gy (Apr)
~wm ) ke EIS(E)d€+2ﬂmf05(£)zﬂ; AW
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where the summation is over the eigenvalues A, which solve the following secular equation

Ji(AgH)=D
Thus,

M H = 3.8317

AgH = 10.1734

A H = 13.3237

From these eigenvalues, it is clear that for moderate H, the confined flow decays much
more rapidly upsiream and downsiream than the free field, with the former demonstrating
exponential relaxation to the freestream and the latter, algebraic behavior.

Based on these considerations, and extension to compressible flow which introduces
& nonlinear volume source the expression for the asymptotic upstream and downstream
behavior is

b= — {(i””s(l)+v-l_~—”}1)”Lﬂf-'dr-jw¢3.da,-}

= orH? K
+TST Y] x = +o00

(2 - 56')

where TST = exponentially small terms which are
0 (e"",‘l’l) as |z| —+ oo

V= ‘/: S{z)dz

The last term in (2 — 56°) represents the average kinetic energy of the horizontal pertur-
bation of the flow.

2.8 Difference Equations for the Wall Interference Correction Potential

A successive line overrelaxation (SLOR) algorithm for the large height correction
potential has been coded. The initial appronch is to use modifications of type sensi-
tive switches developed by Murman and Cole®!, and pseudo-time operators devised by
Jameson®® as well as generalizations of the procedures developed in Ref. 34. Results to be
discussed for the full nonlinear finite height theory algorithm show good convergence for

‘transonic Mach numbers.

The basic code modules to treat this problem have been fiow charted in Fig. B. Prin-
.cipal modules are RELAX1 and RELAXV1 which are used to solve the discretized form
of Eqs. (2 — 47} by nonlinear iteration and SLOR. Some highlights of our approach will

now be outlined.

KK



AEDC-TR-81-24

Applying the SLOR, approach to Eqs. (2 — 47), the d:ism'etized form is
T T R SR & O SR ) w1 — i+
2{(1 - -"'l'.f) (COEFD) ij (¢'+1 ud ¢. (1 d )¢. — Wi+ (1 w )él 1!':—1)

Fiyl — T4 B — Fj-1
¥ — . — dF iy — Bin — T
+ pi-1,5 (gb, Py f'z':'_l - 451-::‘-_:#_‘_:‘_‘2:;5' ) }{(Eiﬂ —::.-_1)
3 -4t
— (v + 1){(%0,.);; {;‘"‘_"_;:':"}

1 Fiy1 + F; - |
* ((F)j("m -"‘5-1)) { (":: - F:‘) (é’“ - ¢;r)
- (;;_t_—;:{i';‘) ($+ ¢,_1) } = RHS;; _
| (2 - 5Ta)
(RHS);; = {3(_‘1’.%%395"_"' - ((1« + 1)(266a: + Bv;b%?o) _ K,) }-';' . (2—5Tb)
(COEFo); = (Ko - (1+ go.), (2 57¢)

and
[0, for COEF,, > 0 (subsonic flow)
ris= {2, o CORFut %0 (supersonic o) (2 57d)

Here, (RHS);; is the discretization of the forcing terms in (2 — 47a), w is a relaxation
parameter chosen such that 1 £ w < 2, the plus superscripts signify current values, the
quantities without plus subscripts denote values from the previous sweep through the flow
field, quantities with § subscript only, have j suppressed, and j subscripted entities have
i suppressed. The structure of (2 — B7) is similar to that for the free field dominant and
finite height (fully nonlinear) problems with the following exceptions:

1) For the nonlinear problems, a factor analagous to COEF,, COEF appears, involv-
ing the actual dependent variables rather than a known quantity, giving a nonlinear
difference equation rather than the linear form (2 - 11).

2} Eq. (2 — 57a) contains a first order linear contribution and a right hand side (RHS);;
absent in the nonlinear free field and finite H problem

3) Artificial damping has been used for the nonlmea.r problem but may not be tequ:red
for the linear one.

4) (COEF), by its nature is frozen in pseudo-time, whereas COEF is constantly being

updated using time linearization with ¢, given by its value at the previous sweep
(time level).

5) Additional boundaries associated with the _zero“l order shocks are required in the ¢
problem across which the perturbation shock conditions need to be satisfied.
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Note, for bodies with pointed tails, Eq. (2 — 57b) specializes to
(RHS)i; = 8xboBol(y + 1) (fo,. )i - (2 - 57)
The tridiagonal system for ¢; is then

Bibi—1 + Didi+ Ajdjisa=C; , j=2,8,--,IMAX -1 (2 — 58a)

COEF, 1 1
D;= -2{ (1= piz) ( " ).—,- (,_,'_H <t —x;_l)

1 1
—pi-1,j (COEFO),-_I'J' (zi 21 Tiy — T 3) }/ (Ti+! - 3:'—1) (2 - 585)
i- - -
_ (v + 1) (dooc)ij 1 {Fj+1 + 7 " Fj+ #fj-1 }
Ti — Ti=1 i (Fivs —Fj—1) | P +75  Fj—Fja
1 Tj+Fj-1
B;=— — F AL ) 2 — 58
TR (P — 1) (7‘:' — Fj-1 ( 9
1 Fit1+ 75
Aj = —— . i ’) 2 — 58d
T Fi (Fipr — 1) (r,- —Fj1 ( )

P -1
C'5=—2{(1—#ij)(COEF°)iJ‘ (%H z.--;(-:-:e )01 : ‘)::-' .-1)

T+
~ o (¢.+45.-: +¢.-1 ¢1-n)} (T_i_l)(éo")u{_‘.*_':l_l} (RHS);;

Tji — Ti—1 Li-1 — Tj—-

(2 — 58¢)
At the body, 7 = 2, and the previously indicated boundary condition, ¢,, = 0 implies
D; =D 4 — ! (2 — 59a)
r2r3
B:=0 . (2 — B59b)

Also, Az and C; take their specialized valuea at # = 73 (with #; = 0).

In (2 — 58) and (2 — 59), the y;; are designed to provide the necessary type sensitive
switching and implementation of Murman's shock point operator defined in Ref. 35. This
bekavior is essential not only for the zeroth order solution but the variational one as well.

Subsequent sections will describe the scheme of shock fitting that interacts with the
difference equations (2 — 58) and (2 — 59).
2.9 Finite Height Application of Zeroth Order Code

As indication of an application of the zeroth order part of STINT25 calculated by
RELAX]1, an equivalent body of revalution representative of a transonic/supersonic
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-

blended wing fighter configuration was computed in a solid wall wind tunnel. The cross sec-
tional aren progression of the model is indicated in Fig. 10 which shows curvature changes
associated with such geometrical features as wing-body intersections, canopies, and inlets.
One purpose of this study was to explore aspects of the application of the code to realistic
airplane geometries.

0.12 x 10°

0.9 x 104+

0.6 x 104

;. 8ix) in2)

0.3 x 104

0.0 1 I | | I J
-200. © 200 400 600 800 1000

X {in.)
Fig. 10. Area distribution of blended wing fighter configuration.

As an indication of the flow environment for subsequent wall interference studies,
Fig. 11 shows the pattern of isoMachs over the configuration associated with Fig. 10in a
free field at My, = .95. These results could be practically obtained using the nonlinear
analogue of the difference method associated with Eqs. (2—57)-(2—59) on a VAX computer
in a CPU limited Fast Batch or interactive environment. The grid utilized 194 points in
the 2 direction with uniform spacing over the body snd logarithmic stretching ahead
and behind. In the 7 direction, a similar geometric progression spacing was used with
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50 points. Nominal convergence* typically was achieved between 500 to 1500 sweeps, with
more sweeps required at the higher transonic Mach numbers.

2/15

-

r 115}

Lo LGl

—4/3  -2/3 0 2/3 4/3
X

Fig. 11. IsoMachs over blended wing configuration in free field, M, = .95.

The complexity of the flow structure evident in Fig. 11 is to be associated with the
multiple inflection points of the area progression and the possibility for envelopes to form
in the steeply inclined wave system. In Fig. 11, a shock is formed near about % of the
body length from such an envelope process.

Figures 12 and 13 illustrate the Mach number and surface pressure distributions at
the same freestream Mach number for the free field environment and a solid wall confined
case. To obtain a nominal simulation of the free field, the upper computational boundary
j = JMAX was placed at H ~ 1.3 and homogeneous Dirichlet conditions were imposed
there. Homogeneous Neumann inflow and outflow conditions at # = oo were also pre-
scribed. For the solid wall simulation, H = 0.66 was utilized. Homogeneous Neumann
conditions were used at § = JMAX and Eq. (2 - 9) applied at 2 = +c0.

* Defined as max ;<;<ciMAX | ¢;'; - ¢.‘,‘ |= 1073,
1ZiSIMAX
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M LOCAL MACH NUMBER

L

| | | I
o.zo 0.2 0.4 0.8 0.8 1.0

Xn

H = 1,32 "FREE FIELD"

INO FREESTREAM
PERTURBATION

ERRMAX = 0.00004

1600 ITERATIONS)
HOMDGENEOUS DIRICHLET
CONDITION AT UPPER
COMPUTATIONAL BOUNDARY

H = 0.66 "CONFINED™":
FREESTREAM PERTURBED
ERAMAX =~ 0.00008
1300 ITERATIONS

Fig. 12. Finite height solid wall interference effect at My, = .95 on blended fighter con-
figuration equivalent body — Mach number distribution over body.
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08 1= 1.32 “FREE FIELD"
[NO FREESTREAM %)
PERTURBATION)
ERRMAX = 0.00004
ITERATIONS
04l 1500 ) W

O H = 0.88 “"CONFINED"":
FREESTREAM PERTURBED O
ERRMAX = 0.00008

1300 ITERATIONS

0.2

- | { 1 | . | |
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Fig. 13. Finite height sclid wall interference effect.at My, = .95 on blended fighter con-
figuration equivalent body —— surface pressures.
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From the figures and in accord with simple one-dimensional gasdynamic reasoning,
the constrictive effect of the solid walls is to exaggerate the effect of stream tube area
charges associated with body area changes,

An experimental validation was performed of the Oth order solver RELAX1 based
on one of the variable blockage ratio tests of a blunt nosed model (B-3) in the Langley
8 and 16 foot tunnels, reported in Ref. 36. The test section was slotted and slatted as
well as octagonal in shape, For such & blunt body which locally violates smell disturbance
theory, the agreement with the data is surprisingly excellent as shown in Fig. 14. For this
comuyasison, the special improved accuracy boundary discretization procedure.described
in the next section was used. The quality of the comparison is believed to be partially
attributable to this improvement.

210 Improved Accuracy Procedures for Numerical Treatmeut of Rody Boundary
Conditions

In the finite wall height application of the code, the interference pressures are com-
puted as the difference between the confined and free field pressures. The numerical trun-
cation ertor is a larger percentage of this difference than of either of the former quantities.
This fact puts a greater demand on numerical accuracy than hes beer stressed in state of
the art codes. Accordingly, all error sources were evaluated. Some items considered within
an incompressible and subsonic framework were:

1. Accurate treatment of boundary conditions on axis of equivalent body.
2. Proper application of upst-ream and downstream far fields.

3. Need for double precision on shorter word length computers such as the VAX to handle
high frequency errors propagating on fine grids for large iteration counts.

4, Treatment of nose and tail singularities.

The techniques apply directly to the transonic case. Moreover, study of subsonic flows
is particularly useful because of the availability of closed form enalytical solutions to check

the numerics.

The second of Figs. 8 shows the subroutine RELAX1, which solves the tridiagonal
system representing a discretized approximation of the transonic small disturbance partial
differential equation of motion (TSDE) (2 - 5a). It contains a special procedure which
deals with the boundary conditions. These are satisfied by incorporating the condition
of flow tangency at the body into the discretization of the vertical perturbation velocity
flux gradient. In the nonlinear difference equation for the free field flow (2 — 57a), this
corresponds to an approximation fulfilling the role of the terms in the braces cn the left
hand side near the equivalent body of revolution (EBR) line of symmetry, (z axis). One
scheme employed is associated with Eqgs. (2 — 59a) and (2 — 58b).

Figure 15 is a schematic representation of the nodes relevant to the boundary points.
In the finite height case, this treatment is made more difficult because the perturbation
potential is logarithmically singular as the scaled radial coordinate tends to zero, Existing
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0.2 "’—- -
]
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Fig. 14. Validation of RELAX]1 code against Couch experiment, B-3 bady, M = .09.
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free field codes familiar to us do not properly deal with this singularity. Wherens this
limitation may be of moderate consequence to the prediction of free end confined pressures,
in accord with the previous remarks, it is absolutely crucial to the treatment of interference
pressures and testing of the variational equation solver. Accordingly, attention was given to
the development of a scheme that accounts for the singularity in the boundary treatment.

&-C
1l

Q

> X

= Nw N Noow
Q

Fig. 15. Nodes in vicinity of axis.
Referring to Fig. 15, the discretization of the third term,

T=1(on)s, (2 - 60)

in the TSDE will now be discussed. This is the vertical flux gradient previously indicated,
Shown in the figure are the first 3 (j) vertical node points as well as } node points. If
fi,d =1,2,--- ,JMAX represent the j mesh points,

rivrsz = (rig1 +15) /2, (2-61)

we ;:onsidei- (dropping the subscript zero on ¢ aad the tildes on r), the discretized version
of T' = Tj, given by

j
Using the half node points in the vicinity of the 2 axis

7,={lcen } . (2-62)

T = 1 (rér)ssa — (rér)asa .
ra Ysf2 —Tajz

(2 - 63)
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The essential new idea is that a “regularized” version ¢ of the perturbation veloc:t.y po-
tential ¢ is introduced, where

3'(3)
$=9- Inr (2— 64)
§'(z) = strea.mw:se (z) derivative of the EBR area progression.

The logarithmic singlarity is represented by the second term in (2 — 64). Numerical dif-
ferentintion of 4 in the r direction is then accomplished by differentiating ¢ as the suw
of a numerical approximation of its regular part and an analytical evaluation of the loge-
rithmically siugular coraponent. The truncation error which would have normally become
large due to the infinity on the axis will be substantially reduced using the differentiation
of the linear polynomial representing the bounded quantity ¢.

In accord with these idens, the terms in (2 — 63) can be evaluated as follows:
(r¢7)5ﬂ = (?'3 + "2) {‘;3 - $2 + S'(z) } - ('ra +I"3) (Js —_ ‘;ﬁ) . S'(.'l:)

2 rs—ra  2n(rs +r3)/2 2 - r3—Tg 27
_[(rs+m) {¢3 — ¢ — S nry fry } + 8'(x)

2 rgs —rg 2n
' (2 — 65a)
2 S'{z) . S'(z)
(rér)asa = "sn{iﬁr 33+ p— } =Tafadr o + 5
{2 — 65b)
i) [$6-Fhn g, $e)
2 e —1 2z
where the fact that
5'(z)
qbz?lnr+g(z)+--- [2"65)
has been used in (2 — 65b). Noting that r; = 0, and collecting results,
T = (ra +r3) [';a —¢2— %{;—anfa/"zl
5e) T (2 —67)
1], z
T [452 - —Er—lﬂfz - 9(3)]
Accordingly, the tridiagonal system discretizing TSDE
Bjdi— +Dibi + Aibir1 = C; , i=1,2,-,JMAX
at j = 2, has in accord with (2 - 67),
B, =0 (2 — 68a)
Az = AP e (2 — 685)
Dz = D23 (2 — 68c)

Co = I jmr + o— {S'(“’} "*"m’-ﬁ-mrz]—g(z)}- (2 68d)

21"'3!"3 2r rg—ry ™
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In the computational implementation, g(z) is initialized.as zero and then updated each
iteration using {2 —66). For (2 —68d), g(z) is “time linearized” from the previous iteration
without relexation. As sn additional refinement, it is useful to note that the three dots

in (2 — 66) Stg) {rilnr r2?Y.
)

in incompressible and subsonic Praadt] Glauert flow, and is an O(S"(z)r? In® r) expression
at transonic Mach numbers. The updated ¢ is computed using linear extrapolation as

o(x) = ds = =2 (b3~ ). (2 - 69)

Numerical experiments show that this produces results equally acceptable to those from an
asymptotic approximation based on previously mentioned higher order terms proportional
to §"(z) when $™(z) is known analytically. For tabular S(z) input, the linear form (2—69)
is preferred due to significant errors possible in obtaining S™(z).

This scheme was applied to treat incompressible flow over a parabolic arc of revolution
body, in the free field and confined by solid walls. The normalized radius F which is given
by

F(z)=2z(1-2z) (0<zX1) (2 — 70a)
gives the cross sectional area, :
S(z) = #F? = dwz*(1 - 22 4 3:“) : (2 — 70b)
Thus
5'(z) = 8n(x — 32 +25°) . (2 — T0c)
Now, in the free field,
8@, 1 1 [1sE®)-SE)
9(z) = - 1114&(1_:)—5 A -'—'-I'I;-:?I'—"df 1 (2-T11)

which for (2 - 70a) specializes to

=2z(1— TR A - SR PSP, _
9(z) =2z(1 -3z + 2z )lnh(]_z) + 3L 22z° + 8z 3 {2 — T2a)
g'(z) =2 (1 — 6z + 62°) {3 — lndz(l — z)} + 6 (i — 6z +62) . (2 - 728)

The corresponding confined solution is given in Ref. 37.

210.1 Results

" Figure 16 gives a comparison of VAX 11/780 application of the finite height code run
in the free field to the exact solution represented by (2 — 70a). The vertical (7) grid was
developed with logarithmic clustering. The clustering parameter SA provides a uniform
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2.1.2 Problem Q:
(K (1 +1)82)dee + 2 (791),+ 25é00 =0 (2 - 5a)
HF&;=%€—) , B<zcl (2 — 55)
d#(z,00=0 , z>1 (2.—56)
e(z, H,0) = fo(=,0, H) = —C,/26* (2 - 5d)
¢(z, H,0) = f(z,6, H} (2-5d)

Here, S{z) = streamwise area progression of the test article, 5(7 ) = dimensianal cross
ectional area, T = dimensional coordinate in freestream dirceiica, and 8(z) = 5(7 )/ L2,
where L is the body length. Problem Q above represents & generalization of those discussed
in Ref. 29 because of the fully three-dimensional nature of the equation of motion (2 — ba)
and in accord with the previous remarks, the more general nature of the external conditions.
The latter are given by either (2 — 5d) or (2 — 5d").

2.1.3 Large H Theory

The secondary expansions associated with H — co will now be considered. It is
anticipated that the structure of the various layers, ie., Axis, Central, and Wall layers
showa ia Fig. 2, will resemble those for solid walls. Accordingly, these represcutations ere:

214 Ceniral Layer

¢ = ¢o(2,F) + p1pa(H)1 pa(x, 7, 8) + pr(H )1 (2,7, 8) + - - (2 —6a)
K=K} +n(HK: +--- (2 — 6b)
A=Ay +m(H)A + - (2 —6c)
which hold in the central limit

z,¥ fixed as H — oo
These lead to the following generalized hierarchy of approximate equations:

2.1.5 Free Field Approximation

(K3 - (74 160, )bv.. + 5 (7doy); = 0 (2-Ta)
216 Variational Equations

(K — (1 + 1o, ) b112,, — (7 + )0, 112, + %(F'hn.-); + ,-,lgﬂﬁmu =0 (2-Tb)
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Fig. 2. Control surface in tunnel.
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(Ks = {7+ 1)o,)b1.. — (7 + 1)¢1.¢o,-. + %(ﬁh;); + ';—gqﬁm = —Ki¢o,, (2—Tc)

where v1(H) = p1(H) to keep the forcing term in (2—7c), and to address the possibility of
adjusting K7 as a Mach number correction to achieve interference—free flow. The significant
complication of Eqs. (2— 7b) and (2 — 7c) over their solid wall counterparis is the presence
of the terms involving # derivatives. On the other hand, a substantial simplification from
the Problem Q is the allowability of factorization and superposition due to the linearity of
these equations. As will be seen, the angular dependence of the far fields for these problems
involve simple factors such as cos 8, cos 26, etc. It is envisioned that this dependence can be
factored out, e.g., by allowing ¢; = ¢1(=,7) cosd, which gives a two-dimensional equation
for ¢;. Also to be confirmed by matching is the assertion that the far field for ¢ has a
similar structure to that given in Ref. 29.

2.1.7 Wall Layer
The appropriate representation is assumed to be

¢ = eo(H)po(z!,r!,0) + 1 pp(H)prpa + 6101 + 4+, (2--8a)
for the wall layer limit,
st=g/H , r'=Ff/H , fixedas H =00 . (2 —8b)

Substitution of (2 — 8a) into the KG formulation gives

O(Eo) H L[Cpo] =0 (2 - 96)

Olerys) : Llwrya] (2 - 9b)

o(el‘ieglﬂ) : L[‘Pi] = ((T + 1)'!”0,1 - K;)P“.f,f ] (2 - Qc)
here 9 18,8\, 18
LEK‘:@-{-A} , Ap= !'_13? (‘r'm) + ;'—,W

2.1.8 Behavior of @ near Origin

2
As in the solid wall case, if Rt = ‘/ (?-) +#2/H, the source-like behavior,

~ S(1) 1 -
e R (2-10)
is anticipated.

From (2 — 5d'), the similarity form,

febH) = 2fE0 (2-11)
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is appropriate, and leads to the boundary conditions
wo(z',1,8) = f(z',8) = f(z*,0 + 2n) (2 —12a)

p1722(z4,1,6) =0 . (2 —12b)

al= ait +orae ("%) * ?-‘:"%
xt=q'/\/Ks
Then (2 — 10) implies
j(-‘l ) (2-13)

With the folliowing exponential Fourier transform pair

Aty =

T = f X o dxt

1

® xt
Yo = o~ e Podk

the boundeary value problem for #, corresponding to (2 — 10), (2 — 12a) and (2 —18) is

Iz, = (8- ¥) g =0 (2 — 14a)

dgy _ 1 5(1)
o = 2 JRs @-14)
%o(1,8) = f(6,k) = F(8 + 2m,k) . (2—14¢)

In contrast to the solid wall case, the decomposition of the solution into the fundamental
solution My and e part M; that is bounded at X = Xeo as indicated in Eqs. (12) of
Ref. 29 is not required since with the Dirichlet conditions, there can be mass flow through
the interface to eliminate the solid wall source flow division st upstream and downstream
infinity. The eigenfunction expansion solving (2 — 14) is

Bo = AoKo(kr!) + Bolo(kr) + Y In(kr?){B, cosnf + Cnsinnf} , (2 - 15)
n=1
where Kp and I, are Bessel functions, the periodicity condition in (2 — 14c) has been used

to determine the eigenvalues A, = n, n = 0,1,2,---, and (2 — 14b) has been utilized to
eliminate the K, for n > 0.

10
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Application of (2 — 14c) and inversion gives finally,

/ cos kx*dk{ S [olkrD) gy Ku(kr')]

VEs | h(k)
Ix
"“I“(‘;)) [ 7, k)dﬁ} (2 - 16)
5 Z f X*I;'(‘?;))dk [ F(#', &) cosn(0 — 0') e

The integrals in (2 — 16) are convergent since the Bessel ratica decay exponentially as
k — oo and are analytic as k — 0,

As indicated previcusly, for the analysis in this section, the 8 variation will be sup-
pressed. This may be realistic for many practical applizations for nearly crcular test sec-
tions and interfaces in the intermediete region of slender body theory discussed in Ref. 80.
For convenience, the f distribution has been assumed symmetricin X, ie., f(X) = f(—X),

t0 ohtain (2 — 16).* Therein, the exponential transforms have been expressed in terms
of cosine integrals. The analysis can be readily generalized to handle unsymmetrical f

distributions.

2.1.9 Asympiotic Representation of (2 —16) as R = (

To obtain the required repi-eaentation, the following integrals are considered:

T = fo ¢0s kxff"f(;";))dk f " 36, k)dé (2 —17a)
_ [T [BrOER) i) e nxt _
T, = fn { e~ Kalk }} kX dk (2 - 175)

pIalkrt) . [ cos (8 — 876" 17
Iy = “z_:l cos kX 1.0 dk f. (¢, ) cosn(8 —6")d6' . (2-17c)

Consistent with the assumption of axisymmetric interface pressures, Iy will not be consid-
ered here. By approximating Io(kr!) and cos kXt as Rt — 0, and term by term integration
of the series obtained, the following approximation for g results:

= Ao+ B RT Py (cosw

+0 (R*’)

* This restriction will be removed in Section 2.2.

i
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where

__S(1) [ Ko(k)dk _
Ag TRt Jo To(k) (2 —18b)

_1 [ dk %y o
f o fo FX Y cos kXX (2 — 18¢)

Kdk [ .

= j; 20 f f(XHcoskX1dx? {2 - 18d)
Dy = —>1) * BKo(k) (2 - 18¢)

2n2 /K3 Jo  To(k)
Here, w is the scaled analogue of the polar angle defined in Fig. 2 i.e., w = cns ! Xt/R!
and Py(cosw) is a Legendre polynomial.

The censtants given in (2 — 18b)(2 — 18e) are all given by convergent integrals. In
particular, 5a converges if f(k) is bounded as |k| — oc, and even under milder conditions
on f. This results from the potent exponential decay of Jy. No problem is encountered as
k — 0 since the integrand 1s anealytic at that point.

The terms involving Bo and Co give the effect of the pressure boundary condition.

2.1.10 Matching

For purposes of matching, the following asymptotic approximations for the wall layer
and central region are appropriate:

Beent al _ Ay  Bpcosw Cy
caz:r r x + 62 {E + 72 + Es‘(cos&u —cosw) + \/IT“RSP"!(CDSUJ)} 10
+ p1s2(H)é1j2 + p1{eo R Pa{cosw) + ay Reosw + ag) + -+
as B — o0

“’“"=z+a={ S0 [~ + (Ao + Bo) + (Co + Do) Pa(oosws) + - ]}

il

+ €1‘!2.Bn COS & [—, -+ (CD + Do)Rt]

+61{C M+C +D| + Cos(cos&u—coaw)
Rt? Rt
+oe as Rt — 0

(2-20)
where Ay, B, Co, and A are constants that have been previously defined in Ref. 29 with

a corrected value for Cp being %’%.
1]

12



AEDC-TR-91-24

Preliminary matching considerations govern the selection of the various elements comn-
prising (2 — 19) and (2 — 20). The ¢; coefficient of u; represents a harmonic solution of
(2 — 7c). The response to the nonlinear forcing terms (v + 1)do, ¢1,,. and (4 + 1)61, b0,
are decaying terms as B — oo that are higher order to the order of the matching and can
be neglected. Regarding (2 — 20}, /2 and 1, the coefficients of €, and ¢, respectively,
consist partially of Xt derivatives of ¢, such that the multipole expansion has- primary
singularities which are source, doublet, and quadrupole forms with their appropriate re-
flections. Thus, the reflection of the doublet is an X derivative of the sources, and the
quadrupole has the same relationship to the doublet.

For matching Egs. (2 —19) and (2 — 20) are written in the intermediate variable

R

R,,:';I- (2—21)

which is held fixed as H — 0o. The gauge function n is an order class intermediate between
1 and H as H -+ co. This is expressed symbolically as

l<<n(H)<< H . (2-22)

Thus, '-%H)' —+ 0 as H = co, and 5 —+ 0 as H — co. For axial symmetry of the interface
pressures, the matching process is almost identical to that discussed in Ref. 29. The only
difference will be the redefinition of certain constants associated with the streamwise inte-
grals of the specified pressure data as well as the switchback terms. For understanding of
basic issues related to the extension to non—axisymmetric interface pressures, the matching
is diagrammed in Fig. 3.

Referring to the figure, the various labeled terms denoted by the circles give the
following matchings:

@ i @ ="'A“=_4r311<; , B=7%

- == g
- matched |
o @ S>a=gr , C=—7‘§E

As will be seen in the next section, the non-axially symmetric case requires additional
terms in the wall, central, and axis layers to deal with the effect of the higher harmonies.

13
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RCARIAE

x
'f""“ ==z +& Guall = % + 67 {c(H) 5(1_). - A . )H._.R:Pz(oosw) + ]
N

Fig. 3. Matching of central and wall regions for axially symmetric interface pressures.
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The matching of the central layer and the axis layer proceeds along similar lines to
that given in Ref. 20. All that is required is the essential result for the boundary condition,
which is

$1,(2,0) =0 . (2-23)

The expression for the interference pressure remains the same as that given in Ref. 20.
However, there is an implicit dependence on the interface pressure date through the far
field influence of the terms involving the constsnts By and Cp defined in (2 — 18¢) and
(2 — 18d). Also, the flux of streamwise momentum of the interference field through the
interface must be considered in the calculaiion of the interference drag. The implicit
dependence on the interface pressure data is shown in the following altered problem Pl
denoted P2 for the interference potential in the central region ¢;.

P2

[K;; - ('7 + 1)¢u=l ¢'1=u - (T + 1)¢0- '#1. + % (’-:él!).'- = _K;él'.l.. (2 - 24&)
$1,(2,0) =0 (2 — 24b)
#1 = oo R Py(cosw) + 01 Reosw+a3 as R — oo (2 - 24¢)

where
ag = Co + Dy (2 — 244)
@ = Boay (2 - 24¢)
Ctg=—8:/b;T?=ﬂuC . (2-24f)

For the free jet case, Cp = 0 in (2 — 24d) and By = 0 in Fig. 3. Solid wall conditionas are
modeled by making ap = b = 5.5(1)/+/K], with an = 8xBoby, with by = .063409*.

2.1.11 Discussion

Because of the relationship of P1 to P2, the computational algorithm which has been
developed for the solid wall case can be used to solve P2 with corrections of the indicated
constants and the post—processing subroutine DRAG1 to account for the flux of streamwise
momentum through the interface. Note here that the effect of as in (2 — 24c) can be
neglected.

* The determination of this value is discussed in Section 2.12.
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2.2 Generalization to Angular and Unsymmetrical Variations

Summary

In this section, the pressure boundary condition asymptotic analysis given in Sec-
tion 2.1 is extended to handle angular interface and unsymmetrical variations of measured

pressure.

Central Layer

With the generalized angular variation at the interface, (2 - 6a) is anticipated to be
modified as

¢ = do(2,F)+pr2(H)brs2 (2,7, 0) +aas s (H)bspa (2, 7, 0) -+ p2(H )1 (z,7,8)+- - (2 — 25)

As compared to (2—6a), (2—25) containg an extra term (indicated by 3/4 subscripts). This
insertion is required by matching considerations associated with the more general class of
intorface pressure distributions involving angular and asymmetric streamwise variations.

The analysis and results are such that Fgs. (2 — 3) to (2 — 6) remain unchanged,
Reflecting ths inore general interface distribution the expression for py becomes

S5(1 =
Po=7 2&},-{7( ~-Q, ) +‘:‘:"T‘;+2ﬂ_2 Z(Q,.cosnﬂ+P sin nf) (2 - 262)

where ( )
5, = [ Tolkr!) Kok) axt _
Qi = f_ D dk (2 — 265)
Q. = f " Ko (krt) X" gk (2 — 26c)
' tI (kl" > _
Qn = f_ e T(-k—)ldk fn 7(6, k) cos ndd8 (2 - 26d)
P, = f_ ) ek X! I'}(f;))dk F(6,k)sinnbds . (2 — 26e)

Upon expanding the integrands in (2 28) for small R, and with considerable algebraic
manipulation, the asymptotic expansions of the integrals can be obtained. The methodol-
ogy exemplified in Ref. 29 involves expansion of the Bessel functions for small rt and the

e* X" Lernel for small X1 and gives a series that can be integrated term by term. These
integrals are convergent for the ray limits (Rt — 0, 8 fixed) of interest.
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Collecting results, the desired expansion of g is

Agn

Yo = pr + Ao+ B + An X!

+ Eort cos B+ Fort sind + X1 Eoir! cos@+ Fprtsind
£ Ty , s LT A

¥ ) thv— Xtz (2~ 27a)
Gor! c08 20 + Hor! sin 20
"3:=! ur

(Co + Do} RY Pa(cosw) + -+

where the terms shown under those in (2 — 27a) are listed to indicate their correspondence
with spherical harmonics and the spherical coordinates are as shown in Fig. 4.

BG50443

Fig. 4. Spherical coordinates.

From the asymptotic expansions, the constants in (2 — 27a} are:

___S5q)
Agp = g e

(2 — 27b)

- S(1) Ko(k) __1_ Wi L B
Ag = 22 /_Kuj To(k) de , Bp= a2 |_ Tk o fr(8,k)d8 (2 —27¢c)
1 * kdk

ir
T F1(0, k)dk (2 - 27d)

-ADI =

17
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kzd‘k _ 1 o rdk 21r_ i
RE j I1UC) cos 0d8 N .‘Fo = mRE./—w m A fsmﬂdﬂ
(2 — 27e)
o kzdk - 1 . oo kzdk 21r_ .
1 4 2R€ j Il(k) cos fd8 y .Fnl = m.ﬂet “mm A fsmﬂdﬂ
(2-27f)
S(1) [ KKy (k) 1 /“ kKdk [T
=>4 o FRR L p=—— | ZED s (2-121
cﬁ 4“_2 "_K‘ Io(k) ] 0 8772 oo Iu(k) J’u fR ( g)
> kidk 1 oo i L f2E_
Go =7 2&/ TR ), o208 Ho= 'Hﬂ‘f_m Ty | Funasae

(2 — 27h)
Matching

Using the intermediate limit described in Section 2.1.10, matching of the central and
wall regions is schematically indicated in Fig. 5 in which both representations are written
in terms of the intermediate variable R, defined in Section 2.1.10. It should be noted that
nonlinear effects are associated with Poisson equation forcing terma such as ¢3_¢y,, in
{2 — 7z}, The Poisson form is associated with B — co ray limit of the central region flow.
In Fig. 4, 1) is a particular solution of the equation

1 . doty N ]
o (2; Binw— ) =3, = tosw (2 — 28a)

and 22 is the solution of

1 (d . dﬂ(?)) Qi _ 3Py(cosw) + 2Py (cosw) (2 — 28b)

ginw Esmw dw gin®w E
As indicated in Section 2.1.10, the matching of the central and axis layers proceeds
along similar lines to that discuased in Ref. 29.

All that is required is the essentiel result for the boundary condition, which is

$1,(2,0) =0

The expression for the interference pressure remains the same aa that given in Ref. 29.
However, there is an implicit dependence on the interface pressure data through the far
field influence of the terms involving the constants defined in (2 — 27¢) to (2 — 27h). Also,
the flux of streamwise momentum of the interference field through the interface must be
considered in the caleulation of the interference drag. The implicit dependence on the
interface pressure data is shown in the following altered problem P1 denoted P2 for the
interference potential in the central region ¢;.

18
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+ %f:”, -l; [.A iRy cosee -+ Eunp Y sinweos B 4 FunMysinwaind & +

%[ 'RJP- s | A_m g P I-I;-I-r' "u-f.unil!w[ﬂn roxd 4 Fy o 9)

-I-A;If” sk si

+aflw) ""'1.

"'"_-“==+5'-‘{l[4}+.4 +o+ +(l'-'n+] b caaw)

r...( ;nus winn 20 A Agyit, smowens

HE

i s\ neos28 4 2 usin29)

1 cimar

+-IFB [@1-2{0-

(Nt ) + e Nrr . S

[

+ M}& ~ Baga(Ca 'Dn)nm(ul) + n")(&,, cosd + 2Fq, sinﬂ)] } =z + 8w
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Fig. 5. General case of matching of rentral region and wall layers.
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P2;

(K5 — (14 Do, )b — (v 4 Déoubi. + (P61, = ~Kido,  (2-290)

$1,(2,0) =0 (2 — 29b)

@

¢1 ~ R {I.Pg(cos w) + cosw sinw 01080 -+ Fo sin#

@

+ sin® w 'A_3c0326 + Agsin 25 }

(2 — 29¢}
+ R{Icosw +sinw r.A_gsinﬂ + Ag cos jJ }
+Ay+--- asR— o0
where by Fig. 5, with B and C defined in Ref. 29
Zo = Co + Do (2 — 20d)
A =2BA, (2 - 29¢)
Az =2CC; =2B(Cy + Do) (2-29f)
Az =Gy (2 ~ 299)
Ay =Ho (2 — 294)
As = Fo1 (2 —29)
:‘;=on ' (2_29j)

2.2.1 Discussion

The problem (2 — 29a)—(2 — 23¢) is the generalization of the Problem P2 given in Sec-
tion 2.1.10 accounting for asymmeiries in the streamwise distribulion of the interface pres-
sures as well as angular @ varigtions. These effects are given by the terms marked as (D
- @ in (2 -29c). They represent averages of the early harmonics which to this order is
all that the far field i3 sensstive to. The specialization to the free jet case is obtained by
setting Dy = go = Hyg = &1 = Fo1 = 0 in Egs. (2 — 29).

2.3 Shock Jump Conditions

An important element to be considered in the numerical zolution of the Problem P1
referred to in the previous sections is the satisfaction of the shock jump conditions. For
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the free field case, these reletions are satisfied by the divergence or conservation form
of the Karmean Guderley small disturbance equation. These give the Rankine Hugoniot
jump conditions. They are satisfied using type sensitive shock capturing schemes such as
those originally developed by Murmen and Cole in Ref. 31. On the other hand, the wall
interference corrections related to the Problem P1 have to be satisfied by use of explicit
relations. These have been derived for the high aspect ratio transonic lifting line theory
fc.mulated in Ref. 32. These relations will be derived for axisymmetric Jow in this section,

Referring to Fig. 6, conditions across the shock front denotea as § will be discussed.
This rurface is giver by

S=g-—-g(F)=D , (2—30)
where £ = br, and consistent with the Problem P1 delineated in Ref. 29, axial symmetry is
assuned, The Problewn P1 describes the wall interference flow away from the walls on the

1.xis of symmelry of & cylindrical test section. The velocity potential in this zone, denotcd
by &, is given by the asymptotic expansion

8C84-29502
n
n X
4 x = gir) SHOCK \
¥ v
—_—
u
€
> SHOCK SURFACE\
X
Fig. 6. Orientation of shock surfaces.
3 2 S S | .
Zr—:a:-i-ﬁ ¢o(z,r)+3+ﬁ¢u(¢,r)+--- . (2-31)

where U is the freestream speed, the ¢; are perturbation potentials, aj is & constant, H is
the wall height in units of the body length, and § is the confined body’s thickness ratio.
The secondary expansion in the braces in (2 — 31} is an approximation for the perturba-
tion potential ¢ which is governed by the Karman Guderley transonic small disturbance
equation (2 — 5a), with #; assumed zero.

Equation (2 — 5a) can be written in the divergence form,

7+1

sigy={xs. -T2} 43600 (2-92)
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where subscripts denote partial differentiation. Denoting the transverse velomty vector as
7 = vlz, (v = 45,.) the 7 derivative term in (2 — 32) can be written as V - ¥, where V- is
the cross flow divergence.

" The integral form of (2 — 32), applied to the infinitesimal th:lckness (= €) volume V
shown in Fig. 6 is

f /‘, L{g}2rididz =0 ,

and the diveiaence theorem givés rise to the flux form

[

where [f] = lime_o{ f(z.g +€) ~ f(z,g — €)}, u = §;, and  is a unit vector normal to 5.
Since (2 — 33) holds for an arbitrary area, the integrand must be zero,

7'2"1:;3 +[1'F]-1;-}2:ridf=0 \ (2-38)

[Ku—-'TTHu’]+[ﬁ']-%‘=O . (2 — 384)

Now -
VS  1-4g'(Fls

T VS| Jixom

where T is the unit vector in the z direction and T; that in the 7 direction. Substituting
into (2 — 34), this gives

(2 — 35)

[ u 7;114’ —¢'[v] =0 . (2 — 34"

By virtue of conservation of tangential momentum across the shock, the perturbation of
the velocity vector ¢ is normal to the shock surface, This perturbation velocity is given by
g-Ur

U

= §%ui+ 8ols
On the basis of tangential momentum conservation,
(§-UT)xV§=0 ,

which gives
[v] =-[u]d'(® . (2 -3b)
Eliminating ¢’ from (2 — 34') using (2 — 35) gives

[Ku - @tﬁ] [u] + [0} =0 . (2 —36)

2
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Since tangential momentum is conserved, the tangential vélocity component to the
shock is continuous across it. Upon tangential integration, and disposing of an unessential
constant, the following relation is cbtained

[¢] =0 . (2-37)

Equations (2 — 36) and (2 — 37) lead upon substitution of the asymptotica into the jump
relations for the approximate quantities appearing in (2 — 31). To obtain a determinate
set of quantities, the shock's representation is assumed to be in the same form as that for

¢, i.e.,
- 1 - 1
g = go(F) + I_;'glli‘(") tEnte (2 - 38)
Denoting f as a quantity of interest which has the same asymptotic form as ¢, on the basis
of {2 — 38) and Tuylor's expansion,
1
f(z,¢) =fo(=,90) + E(flﬁ("" ga) + g1 72.fu. (24 90))

2
+ %L:fo..(t,go) + 'I%;(f:(a:,gu) + 150, (. 90)) (2-38)

+ o

By virtue of (2 — 39), substitution of the expansion (2 — 31) into (2 — 36) gives the approx-
imate shock relations which are:

0Q1) : [(K—7;1uo)uo]+[vn]’=o (2 — 40a)

] [ = 48] + ] [ — (1 -+ D]

+2[o0] [on] = -g,{[u.,] [(k — ¢ + 1)uo}uo, ]

+ [Kuo 1+ lug] o, (2 — 408)

2

+ 2[vo) [vo,] }

where u; = ¢;, and v; = ¢;, where i is equal to 0,1. The quantity g;;; can be shown to
vanish on the basis of (2 — 37) which with (2 — 38) leads to the additional set of relations:

O(1) : [¢o) =0 (2 — 41a)

OH™3) : [1] =—o1[¢0.] - (2 —41b)

It should be noted that the O(H~?), O(H ~2) equations obtained in the process leading to
Eqgs. (2 — 40) are vacuous.
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Equations (2 — 40) and a vorticity relationship to be derived in the next section
complete the formulation necessary for the computational solution.

2.4 Shock Conservation Laws for Wall Correction Flow

In addition to the jump relations derived in Section 2.3, a useful conservation law
can be derived for use in the numerical solutions. In analogy to the free field large aspect
ratio case discussed in Ref. 32, this law will be obtained using the divergence theorem.
Considering the region shown in Fig, 7, the divergence form of (2 — 7¢) (with % =0 and
dropping the stars on the K's) is

{K1do, + Kodr, — (v + )00, 91, }, + %(f"ﬁl#)r- =0,

V- (Kigo, + Katr, — (v + 1o, b1, Kady,) =0, (2—12)

where V- refers to the divergence operator in the %, f coordinate system in which # = /EpF.
From (2 — 42),

IL(K1¢0, — wos,, Kody,) - 7dS
where w = (v +1)¢o, — Ko, S represents the surface of revolution consisting of the sphere

Sr, R = Ry, the cut S around # = 0}, §; around the shock or shocks, and 7 is the unit
normal to the shock surface.

Now, since ¢,(z,0) =0,

[f,-] foniaa=o

where T, is the unit vector in the # direction. Also, f fSn can be shown to vanish to the

order of approximation considered by virtue of Eq. (20b) in Ref. 20. From the previous
section, with the first approximation of the shock shape given by

X = Gy(F)
[¢0p] — M
[¢o¢} =-Gy(f) , ]

where [ ] denotes the jump of the indicated quantity across the shocks and

7— Gh(A)1;

I+ G®)

fl=

the desired conservation law is

[{rm-eni-Bdan . oo
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Fig. 7. Regions appropriate to shock conservation laws.
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where 5 is the shock surface.

2.5 Regularization of the Problem for the Correction Potential ¢

To evoid the singularity at oo, the problem P1 in Ref. 29 is transformed by subtracting
off the far field for ¢;. Accordingly, the variable ¢ is introduced in P31, where

$1=¢1—drr . (2-44)

fere,

M[$1] = (Ko — (7 + L)do, ) b1.. — (7 + o b1, + ::,(f'"'ﬁzr),- =-Kido,, (2—45a)

and
lim gy, =0 . (2 — 46b)
Noting that (for solid walls)
$1 =~ drp = by B  Py(cosw) + 8rby Bo i cosw (2 — 46c)
as
B= % 4
= Fﬂ + F¢ ~— o0
and 2
éFr = b} (x’ H%) +8xbBo X (2 — 46)
where S(l)
’ T e—
= VR

1 oo 0o
4xBy =-S(1)+ /ﬂ S(z)dz + w(y + l)j dr f i ¢, dF
—00 o .

w = polar angle defined in Fig. 1
S(z) = model cross sectional area
R = polar radius defined in Fig. 1

From (2 — 44) and (2 — 46), (2 — 45a) and (2 — 45b) become

M4 = Art Nénlo +;:¢°'H° + o, {(-y +1) (2;—":" + —8%") - K;} (2 - 47a)

lim by, =0 (2 — 475)
$1—0as R — oo (2 — 47c)

26



AEOC-TR-91-24

where R = 6R.

The slender body interference code will use the regularized form represented by Equa-
tions (2 — 47).

2.6 Basic Code Modules

Figures 8 show flow charts which give an overview of the interaction of the functional
modules to be used in the design of the wall interference code under Task 1.0. The
preprocessor ATF sets up the grid and inputs other parameters through the subroutines
INITIA, INPUT. The input geometry datais read in from the disk file. The solver STINT25
has primary subprograms denoted as RELAX1, OUTFNL, SONIC, DRAG]I used to solve
the zeroth order flow problem and RELAXV1, OUTFNL], and DRAG] for the variational
problem for ¢;. RELAXI1 and RELAXV1 are modules which respectively are the principal
succeasive line overrelaxation routines which serve the purpose of solving the tridiagonal
system for the free field and the interference problems. The tridiagonal solver is denoted as
TRID. RELAX1 and RELAXYV1 include special treatment of far field, internal, boundary,
and shock points with appropriate type sensitive switches. SONIC determines subsonic
and supersonic zones, and QUTFNL and QUTFNL1 provide the basic flow and interference
pressure fields as well as the quantities g; defined in Ref. 28 necessary {0 compute free field
and interference drags. These are computed in DRAG and DRAG], respectively. The
relationship of the flow solving modules is shown in Figs. 8.

2.7 Upstream and Downstream Far Fields

For slender test articles that are sting mounted inside solid walls, the flow at great
distances from the model behaves as & confined source in accord with the analyses given in
the previous sections. Referring to the cylindrical coordinate system indicated in Fig. 9,
far field behaviors were worked out in certain “ray limits” in which if R = v#? + #2 and
cosw = z/R, R — 0 for 9 fixed. The casew =0, or 7, i.e., z —+ +oc however is degenerate
and requires special treatment and had not been analyzed.

For a properly posed numerical simulation of the finite height case, the structure of
this flow must be properly modeled. This can be achieved using the Divergence Theorem.

If z is the usual dimensionless coordinate in the freestream direction depicted in Fig. 9,
then the transonic small disturbance formulation gives the following equation of motion

Ap=dxx+ ;1_: (Fée): = %—uéxtﬁxx (2 —48)

where K = (1—M?3,)/62, My, = freestream Mach number, ¢ is the perturbation potential,
and X = z/vK. The slender body boundary condition is
.09 S'(z)
o= 2-49)
where §(z) is the cross sectional area distribution for 0 € z < 1, and S'(z) is without
great loss of generality assumed zero for 1 < z < oo, (constant diameter sting).
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TO SOLVERS

ATF
INPUT

BC-0M2-CH

ATFIX.DAT

HT PAR.DAT
INPUT AND

CONTROL FILES

INPUT

(SETS LUP
GRID
PARAMETERS)
]
INITIA
Iy ]
GX GRID GY GRID
(SETUP (SETUP
X GRID) F GRID)

Fig. 8. Flow chart for preprocessor and solver.
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SOLINP. DAT
ATFBOPT. DAT
ATFBOPTY. DAT
x, T VECTORS, DX,GAMM1, GAM,
P, IMAX, JWAX, PHI, PLS, SB0ODY,
PLG1, TAU, ETC.

¥

STINT26
MAIN DRIVER

¥
RELAXI, RELAXW
(BOLVE DIFFERENCE
E0B) FOR 0P AND
PERTURBATION FLOW

¥

COMPUTE
COEFFICIENTS

?

Fig. 8. Flow chart for preprocessor and solver (continued). N in the notation STINTN denotes
the Nth version of the main driver.
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¥ ¥ v L
INTERNAL BOUNDARY SHOCK
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FIELD (SWITCHES) (SWITCHES) {SWITCHES)
TRID
{SOLVE
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Fig. 8. Flow chart for preprocessor and solver {concluded).
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A control cylinder is considered consisting of the walls (Sy ), an internal surface bound-
ing the model near the axis, (S,), and the inflow and outflow faces (S_q0) and Se, respec-
tively. Accounting for the impermeability of the walls expressed as

8¢ _
o LH_. 0, (2 — 50)

the divargence theorem when applied to (2 — 48) gives

J 1895 =] [ vis = [0 [ R 00}

(2-51)
where V denotes the volume of the control eylinder. Evaluating the terms in (2 — 51),
06 . - [T [0 . [CS),.
!:;‘ andS—;uﬂjo dﬂ/ﬂ aﬁrdx _21-./0‘ 2 dX =5(1) . (2—62)
From {2 — §0),
o9
x| d§=0 . (2-53)
-/Sn on f=H

For a slender configuration, we assert that ss in the subsonic case, the lift effect produces
a Trefftz plane (z = co) flow component that can be represented as an infinitesimal span
vortex pair reflected in the walls. This pair is the Trefftz plane projection of the trailing
vortex system from the body. Superposed on this flow is an outflow due to the source
effect. A similar outflow occurs at z = —oco. Accordingly, we are led to the asymptotic
inflow and outflow cnnditions

¢~ Crrz+ f(§,5) asz—o o (2 — 54a)
(ﬁ=1‘-’ain6)
Z = fconl
¢~ —-Cppzx BS T — —00 (2 — b4b)

where f(§, #) is related to the lift, and the constant factor Crp appears in the manner
indicated in order to preserve the anticipated symmetry of the apparent source flow from
the sting-mounted, finite base area model. In this connection, it is important to note that
Eqs. (2 —54) are exact solutions to the nonlinear small disturbance equation (2 —48). This
is true even for f(§, #), since it satisfies cross flow Laplace's equation. It should be noted
that the inflow and outflow conditions to be specified at z = too are independent of the
form of f.

From (2 — B4), it is clear then that

ff -a—¢dS = Qﬂ'cla'pﬂz . (2 - 55)
SeodSaco on .
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Fig. 9. Model confined by solid cylindrical walls and control volume.

The last term to be evaluated in 2 — 51) is the right hand side, which is

H
_21rjo FdF » (Z;_l) ai, (¢%) dX (T + l)f i { % (00,7) — ¢% (—o0,7}} dF

which vanishes by virtue of (2 —~ 54), as a milder condition of symmetry of the axial
component of the far upstream and downstream flow. From this, as well as (2 — 51)
to (2 — b5), it follows that the inflow and outflow conditions are,

PRPORELO)

e as T - oo (2 - 56)

i.e., the apparent source strength is proportional to the body base area. Equation (2 — 56)
is used in the numerical simulation of the flow field.

A complete asymptotic expansion based on the eigenfunction expansion for a confined
point scurce given in Ref. 20 can be used to obtain refinement of (2 — 56) and treat the
transonic case. From Green’s theorem and the properties of the Green's function G, the
perturbation potential ¢ in the confined incompressible solid wall circular cross section
case is

- [_gs R R T
-z ) | c|S(e.)de+2,,H2jOS(e); YT
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where the summation is over the eigenvalues A, which solve the following secular equation

Jh(AaH) =0 .
Thus
’ A H = 38817
ApH ~= 10.1734
s H = 13.3237

From these eigenvalues, it is clear that for moderate H, the confined flow decays much
more rapidly upstream and downstream than the free field, with the former demonstrating
exponential relaxation to the freestream and the latter, algebraic behavior.

Based on these considerations, and extension to compressible flow which introduces
a nonlinear volume socurce the expression for the asymptotic upstream and downstream
behavior ia

gu L {(ﬂ::‘:Fl)S(l)_FVi%LHFd:’ qu%,ah}

~ oxH? K
+4 TST as r — +oo

(2 56')

where TST = exponentially small terms which are
0 (e"fil”l) as |z| = o0

V=ju1 S(z)dz

The last term in (2 — 56') represents the average kinetic energy of the horizontal pertur-
bation of the flow.

2.8 Difference Equations for the Wall Interference Correction Potential

A successive line overrelaxation (SLOR) algorithm for the large height correction
potential has been coded. The initial approach is to use modifications of type sensi-
tive switches developed by Murmen and Cole®!, and pseudo-time operators devised by
Jameson®? as well as genernlizations of the procedures developed in Ref. 34. Results to be
discussed for the full nonlinear finite height theory algorithm show good convergence for
transonic Mach numbers.

The basic code modules to treat this problem have been flow charted in Fig. 8. Prin-
cipal modules are RELAX1 and RELAXV1 which are used to solve the discretized form
of Eqs. (2 — 47) by nonlinear iteration and SLOR. Some highlights of our approach will
now be outlined.
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Applying the SLOR approach to Eqs. (2 - 47), the discretized form is
ooy —w 1ot — (1 —wDd: @ -
2{ (1 - Fl'.i) (COEFD),-J- (¢1+1 d 1¢‘ (1 w l)é' — 1¢‘ + (1 el 1)5' ¢:—1)

Ti41 — T Tj = Ti-1
¢t -di-dt,  im1—di-a— ¢
+#i—1.j( T — T 1 ¢ n:i—ld:- .:.'—_f )}/(:c.-+1 - @)
_(T+1)(¢o,.).-,-{t _j-_—:} .

1 + ,
* ((F),-(ﬂ-ﬂ - f,-_l)) { (F2t2) (3t -4)

- (..—i:z'_—i:':;l) (ﬁ;:' - 9";;!'_1) } = RHS;;

Ti+1 = Fi-1
: (2 ~ 57a)
(RHS);; = {2(—""7{1—33‘5"—“ +éo (r+ (G2 + 22 ki) }ﬁ 257
(COEFo),; = (Ko — (7 + 1)d0,);; (2 - 57c)

and
. _ |0, for COEFy,; > 0 (subsonic flow)
Hij = { 1, for COEF,,; < 0 (supersonic flow) . (2- 57d)

Here, (RHS);; is the discretization of the forcing terms in (2 — 47a), w is a relaxation
parameter chosen such that 1 < w < 2, the plus superscripts signify current values, the
quantities without plus subscripts denote values from the previous sweep through the flow
field, quantities with i subscript only, have j suppressed, and j subscripted entities have
{ suppressed. The structure of (2 — 57) is similar to that for the free field dominant and
finite height (fully nonlinear) problems with the following exceptions:

1) For the nonlinear problems, a factor analagous to COEFy, COEF appenars, involv-
ing the actual dependent variables rather than a known quantity, giving a nonlinear
difference equation rather than the linear form (2 — 11).

2) Eq. (2 — 57a) contains a first order linear contribution and a right hand side (RHS);;
absent in the nonlinear free field and finite H problem.

3) Artificial damping has been used for the nonlmear problem but may not be required
for the linear one.

4 (COEF), by its nature is frozen in pseudo-time, whereas COEF is conat.antly being
updated using time lmeanzatmn with ¢, given by its value at the previous sweep
(time level).

5) Additional boundaries associated with the zero'* order shocks are required in the ¢
problem across which the perturbation shock conditions need to be satisfied.
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Note, for bodies with pointed tails, Eq. (2 — 57b) specializes to
(RHS);; = 8mboBo(y + 1} (d0,.)i; (2 - 57¥)

The tridiagonal system for JS,- is then

Bidi1+Didi+ Aidi1=C; , j=2,8,---, JMAX -1 (2 — 58a)
_ _, { COEF, 1 1
D;= 2{ ( —u.,)( - ).-,- (z.-+1 <t —:s.-_:)
1 1
ki1 s o m 2 — 58b
i-1,5 (COBFe);-.; (-Ti —zi | T —ﬂ-'i—z) }/(3-“ ) !
_ (7 + 1) (fo.a )i _ 1 {!’;‘+1 + #; + Fi+Fiz }
Ti = Tim1 Pi(Fip1 = Fim1) L Fp + 7 7y —Fja
1 Fi+ i
B = —— - i BLILY ) 258
P Fi(Fie —Fia) (".r' — i1 (288
1 Fipr + Fj
A= —— _ 1 ’) 2~ 58d
T Fi(Fia = Fi) (".r‘ —Ti ( )

— w14 — 4T
Cj= _2{ (1 — p:i;) (COEFy),; (¢I+1 zH(-: —:i ke - = :i _):"'“ ¢'—1)

3 A dt i+t _ 4. it
N ("" sy Sina ""’) } {1+ 1) (B0u)yy {—iL} + (RES)g

Ti—Tj-1 Tij-1 — Ti-2 Ii—Ti-1
(2 — 58e)
At the body, § = 2, and the previously indicated boundary condition, ¢;, = 0 implies
Dy =D 4 L (2 - 59a)
T2
B;=0 . (2 — 59b)

Also, A; and C; take their specialized values at ¥ = fp (with 7, = 0).

In (2 — 58) and (2 — 59), the p;; are designed to provide the necessary type sensitive
switching and implementation of Murman’s shock point operator defined in Ref. 35. This
behavior is essential not only for the zeroth order solution but the variational one as well.

Subsequent sections will describe the scheme of shock fitting that interacts with the
difference equations (2 — 58) and (2 — 59).
2.9 Finite Height Application of Zeroth Order Code

As indication of an application of the zeroth order part of STINT25 calculated by
RELAX]1, an equivalent body of revolution representative of a transonic/supersonic
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blended wing fighter configuration was computed in a solid wall wind tunnel. The cross sec-
tional area progression of the model is indicated in Fig. 10 which shows curvature changes
associated with such geometrical features as wing-body intersections, canopies, and inlets.
One purpose of this study was to explore aspects of the application of the code to realistic
airplane geometries.

0.12 x 10°
0.9 x 104
o~
= .
= 0.6 x 104
x
[¢5]
0.3 x 104}
0.0 | I 1 | ] ]

Z200. 0 200 400 600 800 1000
x {in.)
Fig. 10. Area distribution of blended wing fighter configuration.

As an indication of the flow environment for subsequent wall interference studies,
Fig. 11 shows the pattern of isoMachs over the configuration associated with Fig. 10 in &
free field at My, = .95. These results could be practically obtained using the nonlinear
analogue of the difference method associated with Egs. (2—57)-(2~50) on a YAX computer
in a CPU limited Fast Batch or interactive environment. The grid utilized 194 points in
the z direction with uniform spacing over the body and logarithmic stretching shead
and behind. In the 7 direction, a similar geometric progression spacing was used with
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50 points. Nominal convergence* typically was achieved between 500 to 1500 sweeps, with
more sweeps required at the higher transonic Mach numbers.

2115

o

r 115

S 1

-4/3  -2I3 0 2/3 4/3
X

Fig. 11. IsoMachs over blended wing configuration in free field, M, = .95.

The complexity of the flow structure evident in Fig. 11 is to be associated with the
multiple inflection points of the area progression and the possibility for envelopes to form
in the steeply inclined wave system. In Fig. 11, a shock is formed near about  of the
body length from such an envelope process.

Figures 12 and 13 illustrate the Mach number and surface pressure distributions at
the same freestream Mach number for the free field environment and a solid wall confined
case. To obtain a nominal simulation of the free field, the upper computational boundary
j = JMAX was placed at H =~ 1.3 and homogeneous Dirichlet conditions were imposed
there. Homogeneous Neumann inflow and outflow conditions at z = *co were also pre-
scribed. For the solid wall simulation, H ~ 0.66 was utilized. Homogeneous Neumann
conditions were used at § = JMAX and Eq. (2 — 9) applied at = = Loo.

* Defined as max1<icimax | 45 — ¢ij |= 1075
135S IMAX
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Fig. 12, Finite height solid wall interference effect at My = .95 on blended fighter con-
figuration equivalent body — Mach number distribution over body.
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Fig. 13. Finite height solid wall interference effect. 8t M. = .95 on blended fighter con-
figuration equivalent body — surface pressures.
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From the figures and in accord with simple one-dimensional gasdynamic reascning,
the constrictive effect of the solid walls is to exaggerate the effect of stream tube area
charpges associated with body area changes.

An experimental validation was performed of the Oth order solver RELAX1 based
on one of the variable blockage ratio tests of a blunt nosed model (B-3) in the Langley
8 and 16 foot tunnels, reported in Ref. 36. The test section was slotted and slatied as
well as octagonal in shape. For auch a blunt body which locally violates small disturbance
theory, the agrcement with the data is surprisingly excelient as showr in Fig. 14. For this
comuacison, the special improved accuracy boundary discretization procedure described
in the next section was used. The quality of the comparison is believed to be partially
attributable to this improvement.

2.1 Improved Accuracy Procedures for Numerical Treatmeut of Rody Boundery
Conditions

In the finite wall height application of the code, the interference pressures are com-
puted as the difference between the confined and free field pressures. The numerical trun-
cation error is a larger percentage of this difference than of either of the former quantities.
This fact puts a greater demand on numerical accuracy than has beer stressed in state of
the art codes. Accordingly, all error sources were evaluated. Some items considered within
an incompressible and subsonic framework were:

1. Accurate treatment of boundary conditions on axis of equivalent body.
2. Proper application of upstream and downstream for fields.

3. Need for double precision on shorter word length computers such as the VAX to handle
high frequency errors propagating on fine grids for large iteration counts.

4. Treatment of nose and tail singularities.

The techniques apply directly to the transonic case. Moreover, study of subsonic flows
is particularly useful because of the availability of closed form analytical solutions to check
the numerics.

The second of Figs. 8 shows the subroutine RELAX1, which sclves the tridiagonal
system representing a discretized approximation of the transonic small disturbance partial
differential equation of motion (TSDE) (2 — 5a). It contains a special procedure which
deals with the boundary conditions. These are satisfied by incorporating the condition
of flow tangency at the body into the discretization of the vertical perturbation velocity
flux gradient. In the nonlinear difference equation for the free field flow (2 — 57a), this
corresponds to an approximation fulfilling the role of the terms in the braces on the left
hand side near the equivalent body of revolution (EBR) line of symmetry, (z axis). One
scheme employed is associated with Eqs. (2 — 592) and (2 — 59b).

Figure 15 is a schematic representation of the nodes relevant to the boundary points,
In the finite height case, this treatment is made more difficult because the perturbation
potential is logarithmically singular as the scaled radial coordinate tends to zero. Existing
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Fig. 14. Validation of RELAX1 code against Couch experiment, B-3 body, M = .p8.
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free field codes familiar to us do not properly deal with this singularity. Whereas this
limitation may be of moderate consequence to the prediction of free and confined pressures,
in accord with the previous remarks, it is absolutely crucial to the treatment of interference
pressures and teating of the variational equation solver. Accordingly, attention was given to
the development of a scheme that accounts for the singularity in the boundary treatment.

H
j=3 O
2 x
2 o
2 x
1 > > X

Fig. 15. Nodes in vicinity of axis.
Referring to Fig. 15, the discretization of the third term,

T= 2 (Fdocks . (2 - 60)

in the TSDE will now be discussed. This is the vertical flux gradient previously indicated.
Shown in the figure are the first 3 (j) vertical node points as well as % node points. If
f5,4 =1,2,.-- , JMAX represent the j mesh points,

risize = (riq +15) /2, (2-61)

we consider (dropping the subscript zero on ¢ and the tildes on r), the discretized version
of T' = T}, given by

7={10é).} . (2-62)

i
Using the half node points in the vicinity of the z axis

T = 1 (rér)sse = (rée)ss
? r2 rs/z —Trafz '

(2 — 63)
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The essential new idea is that a “regularized” version ¢ of the perturbation velocity po-
tential ¢ is introduced, where

.5" z
§'(z) = streammse (z) derivative of the EBR area progression.
The logarithmic singularity is represented by the second term in (2 — 64). Numerical dif-
ferentiation of ¢ in the r direction is then accomplished by differentiating ¢ as the suw
of & numerical approximation of its regular part and an analytical evaluation of the loge-
rithmically siugular coriponent. The truncation error which would have normally become

large due to the infinity on the axis will be substantially reduced using the differentiation
of the linear polynomial representing the bounded quantity .

In accord with these ideas, the terms in (2 — 63) can be evaluated as follows:
(rée)ssz = (rg +ra) { ~é + 5'(2) } - (ra +rg)($3 - 52) N 5'(z)

2 rg—-rg 2x(rs +r9)/2 2 ry — 13 2
- (rs +r2) {¢a — ¢ - %(,;:llnfa/"z } + 5'(z)

(2-64)

2 r3 —ry 2z
) (2 — 6Ba)
5 S'(= % 5'(z)
("ér)sn = fs/z{'f’r 32+ Y- , } = rs[z¢r o2 + o
, {2 — 650)
_(rtm) [ 6 — SElnrs — g(=) 4+ 5(=)
- 2 1‘2 - 27
where the fact that
§'(z)
¢~ - Inr 4+ g(z)+--- (2 —66)
has been used in (2 — 65b). Noting that r; = 0, and collecting results,
7, = (ratra) s ~ s — Z=lnry fra
2 rBon (2-67)
1. S) _
-La-Tun -6
Accordingly, the tridiagonal system discretizing TSDE
Bjdj-1+ Djdj + Ajdjr1 =C; , j=1,2---,JMAX
at j = 2, has in accord with {2 — 67),
Ba=0 (2 — 68a)
Az = A;:)’ | =2 (2 — 68b)
Dz = D}%|jma (2 -68¢)

Ca = CPjca + — {S'(’) "*"h:'—"—lnm]—y(x)}- (2- 68d)

21!‘3!‘3 2 rs —Fa r
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In the computational implementation, g(z) is initialized as zero and then updated each
iteration using (2 —66). For (2—68d), ¢(z) is “time linearized” from the previous iteration
without relaxation. As an additional refinement, it is useful to note that the three dots

m(2-—-66
i ) _8"(z) {r*Inr
C 2n 4 4

in incompressible and subsonic Prandt] Glauert flow, and is an O(S ""'(:;:)ﬂr-2 In? r) expression
at transonic Mach numbers. The updated ¢ is computed using linear extrapolation as

g(z)=¢s - r:—iz (@33 - ');2) . (2 —69)

Numerical expariments show that-this produces results equally acceptable to those from an
asymptotic approximation based on previously mentioned higher order terms proportional
to §"(z) when 5"'(z)} is known analytically. For tabular §(z) input, the linear form (2—69)
is preferred due to significant errors possible in obtaining S"'(z).

This scheme was applied to treat incompressible flow over a parabolic arc of revolution
body, in the free field and confined by solid walls, The normalized radius F' which is given
by

F(z)=2x(1-2) (0<=z<1) (2 — 70a)
gives the cross sectional area,
S(a:_) =rF? = dnz®(1 -2z +2%) . (2 — 700)
Thus
§'(z) = 8n(x — 3z +2z°) . (2 - 70¢)
Now, in the free field,
_S@,_ 1 _1 [80-50) _
()= B &l le-g * (2-7)
which for (2 — 70a) epecializes to ‘
(z) = 22(1 — 3z +2z%)In 1 + I PPV + 8z — 1 (2 —72a)
gz = dz(l-7z) 3 3
¢'(z) = 2(1 - 6z + 6¢°) {3 - Inde(1 ~ 2)} + 6 (1 — 62 +62%) . (2 -T2

The corresponding confined solution is given in Ref. 37.

2.10.1 _Resulis

Figure 16 gives a comparison of VAX 11/780 application of the finite height ccde run
in the free field to the exact solution represented by (2 — 70a). The vertical (f) grid was
developed with logarithmic clustering. The clustering parameter S4 provides a uniform
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grid when S§A = 1 and progressively greater clustering near the z axis with increasing SA.
For Fig. 16, SA = 1.0001 (almoat a uniform grid) was used to compute g. (The function

g’(z) is an important term in the acpressmn for surface pressures.) Reasonable agreement
w:th the exact solution of Eq. (2 — 72a) is indicated with this gnd selection as well na
iterative convergence.

Figure 17 demonstrates the effects of changing the clustering parameter SA to 1.1 and
mesh convergence. Improved agreement with (2 — 72&) is demonstrated as well as good
convergence with respect to the mesh gize. In fact, it is clear that acceptable accuracy
is obtained with an intermediate 100 x 50 (100 points in the 2 direction and 50 in the r
direction) grid, as zompared to the fine 200 x 100 grid.

‘Turning to ¢'{z), Fig. 18 shows an iterative convergence study on the almost uniform '
vertical grid configuration considered in Fig. 16. Although excellent convergence (in the
mean) to the exact solution (2 — 72b) is indicated, oscillations are present. 1'wo iieme
were investigated in connection with this phenomenon. One involves the relatively short
word length avuiiable on the VAX and its interaction with roundoff propagation present
in the successive line overrelaxation (SLOR) method. ¥ p indicates the “chopping” error
associated with this word length restriction, there is an adverse effect of mesh refinement.
Letting 6z and &r represent characteristic step sizes in the z and r direction, respectively,
the roundoff error is O{p/ézér) as éz,6r — 0. Therefore, p was reduced by a double
precision modification of the finite height code. Returning to 54 = 1.1, Figs. 19 and 20
indicate the benefits of this change, where the single precision oscillations of Fig. 19 are all
but eliminated by the double precision algorithm as shown in Fig. 20. There is, however, a
latent inaccuracy in the vicinity of the nose and tail stagnation points. From an asymptotic
approximation of (2 — 71) in the vicinity of the nose,

o(z) = &) 4 ps z,r — 0. (2 -13)

ar g [x+\/=?*_+'r?j”’

A similar formula with z replaced by 1 — z applies near the tail. The procedure asso-
ciated with Eqs. (2 —67) and (2 — 68) must be modified to handle the special z “boundary
layers” near x = 0 and 1. This not only involves subtracting off the associated logarith-
mic singularities, but incorporating refinements in the interpolation procedure as well. As
mentioned previously, these improvements are important in obtaining an adequate predic-
tion of the interference pressures. Computations of the latter without such measures are
shown in Fig. 21 for a 100 x 50 grid. There, the streamwise distribution of the normalized
interference pressure AC, with

égl =-24g" , A( }=( Juana=( )iree fiata (2-74)

is plotted, where A signifies the difference between confined and free field distributions at
a value of the reduced height parameter H (wall height in units of the body length) ~ 1.1,
and & is the body thickness ratio. Although qualitative agreement with results of Ref. 37
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Fig. 16. Iterative convergence study of g.
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Fig. 17. Mesh convergence study of g (DASH2 legend is the dash-dot curve).
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Fig. 18. Iterative convergence study of g'(z).
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Fig. 19. Roundoff study of ¢'(x).
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Fig. 20. Roundoff study of ¢'(z).
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are indicated, it is speculated that the mild oscillationa shown in Fig. 20 near z = 0 and 1
are aggravated by the interaction of the close solid walls and the logerithmic singularities
at these points given by Eq. (2 — 73).

2.11 Shock Fitting Scheme for Wall Interference Correction Potential

In Section 2.9, runs were discussed of the finite wall height code option associated
with a realistic compact blended wing fighter configuration. This code has been designed
to incorporate the proper source like ivflow and cutflow boundary conditions associated
with solid walls. In addition, difference sch2mes were developed for the large height theory
formulated as the problem P1 in Ref. 20. The variational equation solver uses & special
procedure to treat shock jumps in the solution for the wall interference correction potential
é. The shock poler relating these jumps to the streamwise and transverse derivatives of é
are given as Eqgs. (2 — 40) and (2 - 11).

22 shows the relationship of the geometry of a typical shock structure arising
in the ¢ preblem and the grid. As one choice among various options, also considered in
connection with the high aspect ratio code discussed in Section 3, the finite difference im-
plementation will satiefy the shock relations across PO by surrounding it by the internal
boundary condition carrying “notch” ABC'D. The contour of this notch is composed of
lines parallel to the 7 and = axes. It is presently felt that this selection provides substantial
coding simplifications as compared to another option involving a curved internal boundary
not paralle] to the axes. A disadvantage of the notch scheme is that it can diffuse the shock
somewhat beyond the few mesh points necessary to capture it in the zeroth order approx-
imation for the perturbation potential. However, this additional spreading is provisionally
assumed to be small, since the cases of primary concern will involve almost normal shocks.

B.efernng to Fig. 22, the strategy to be applied is to determine shock jumps in é at
the various j levels [¢] = $(NSPMAX,j)— $(NSPMIN, ;) as & vector sequence

m Jo=J , (2 - 75)

n—o0
where J,, denotes the vector ([3]1, [#)z, (B3, [$]Jsu_gx) at the n'd guccessive line over-
relaxation (SLOR) sweep. The iterative sequence (2— 75) is required since J is coupled to
the solution field ¢. _

In the 1mplenta.t.mn J is the solution of a bidiagonal or tridiagonel system which
is solved by recursion. The coupling of ¢ is nonlinear through the coefficients appearing
in the system. Accordingly, & linearization in pseudo—time involving the values of ¢ at the
n—1 level hns been coded. The new values of J are then used for the tridiagonal system

along & = z; lines to update the § row veciors along #; along © = z; on the next sweep.
The process is iterated until convergence is obtained.

Differencing the jump conditions (2 — 40) and (2 — 41) gives

aj [u;]J. + bj(tll) + ¢ [‘U]] + d; [qbl] =0 , (2 — 76a)
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Fig. 21. Interference pressures on a confined parabolic arc body. H ~ 1.1, 100 x 50 grid,
1200 iterations.
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Fig. 22. Schematic of shock fitting geometry for wall interference correction potential.
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where { } signifies an average across the unperturbed shock, and

aj = {K — (7 + 1uo} [wo)” = [vo]’ (2 —766)
by = (K — (7 + 1)uo] [o]’ (2 —760)
¢j =2 [vo] [uo] (2 — 76d)

dj = [oo] fuoe] _ 2[vo] [vo,] — [(K — {7 + Duo)uo,] [ue] . (2 -T76e)

[1a]

Using the shock uotch idea and assuming without loss of generality, & single shock is ir the
flow (fishtails for Mach numbers near unity and choking may require special treatments),
denote the points in the shock notch as:

TNSPMIN, TNSPMIN41, ZNSPMIN+2; ***y TNSPMAX (2-77)

where znspMiN < Txj and ZNsPMAX 2 TEj, and Twj, TEj denote the upstream and

downstream locations about the shock at each j, or the last hyperbolic and first elliptic
points, respectively.

In more compact notation, let superscripts — and + denote the pre- and post-shock
sides of the notch, respectively (NSPMIN and NSPMAX) and let s indicate the shock as
well as [¢1]j signify the jump of ¢, at j. Then

+ - — -
uhtun, 1 b1 -4y, — [#1] | @5 — #oma _
{m) = =5 =3 { . A } (2 - 78)

where the i and 7 subscripts have been selectively suppressed.
Substitution of Eq. (2 — 78) into Eq. (2 — 76) gives the following bidiagonal system
of equations for [&1]’_ noting that (i) = (1) ~ C, where C = %IEB-I

. C;— B4,
6], = ’—D’yr—‘ , 3<ji<ISMAX (2 — T9a)
c; a;+b/2
A (2 - 790)
B; = —-% (2 - T9¢)
—Ci=a 4’5;'.:11) - ég‘) ¢(n) ¢(n11
7 4 A:ﬂp A.‘#U
b [ B | -8,
+3 { e ey e C (2 ~ 794)
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where Af = 7; — #j—1, U signifies nspmIn, D signifies syspmax, Azp =2zp41 — 2D,
Az = zy — 2y—1, 0 is the current time level and n — 1 the previous level.

In one version of the variational solver, central difference approximations are applied
to the discretization of the v components in (2 — 76), leading to the use of a tridiagonal
Thomas algorithm. The bidiagonal formulation results from one-sided differences. If the
recursion proceeds downward from the top of the shock notch, it is unstable. At the top,

[&1] is determined from the fact that it is a body point. Section 2.16.1 provides more
information on the upward bidiagonal recursion scheme represented by (2 — 79a}.

For & tridiagonal formulation, there has been an issue regarding the appropriate
boundary conditions at the foot of the shock, assumed located at j = 2. Since ¢ (the
finite wall height perturbation potential) and ¢y are logarithmically singular there, there
is & question regarding the behavior of [¢,]. This appears to be resolved by the fact that
#1,(2,U) = . Hence, [¢;,] ~ 0 at j = 2. Moreover, in the finite wall (H) case, since

c,ézsz(:)lni‘asﬁ—aﬂ : (2 - 80)

then the limit 7 | 0, z fixed = 2~, 2%, where — and + denote the upsiream and downstream
sides of the shock, respectively, with S'(z) continuous at the shock gives

[¢7] =00 —c0=D . (2 - 81)

Anpother approach is to multiply the jump equations by # and note that [¢z] = [rés). This
avoids the infinities in Eq. (2 — B1). The relation {¢,] = 0 implies that

[¢d)e =[#1)y - (2-82)

Equation (2 — 82) is used to find the interference potential on the body.

A related problem was studied in Ref. 38 in regard to the invariance of the shock
position on a body of revolution in transonic flow, Some aspects of this question and
conditions near the foot of the shock are discussed in the Appendix.

2.12 Determination of Second Term of Central Layer Large Height Expansion

For the numerical work, the asymptotic expansion of the velacity potential ¥ in the
near field of the test article is given by (2 — 31). The constant gy related to aj in that
expression given by

a =5__m=l = .].'—_.If_l.(.ﬂ —
o= = {k= m)}‘”‘ (2-83)

has been numerically determined. This result gives an indication of the small H elasticity of
large H theory, a small value being suggestive of extended validity, as in the incompressible
case treated in Ref. 37.
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Although the integral in (2 — 83) converges, the convergence is numerically poor on &
uniform grid due to an integrable logarithmic singularity associated with the ratio of the
modified Bessel functions at the lower limit.

To improve convergence, the asymptotic behavior of the integrand

1 Kyk)

k2 2L(k) T

—%ln% as ko0 (2—84)

was subtracted and added to regularize the integral to provide the modified expression

!rﬂao=1-|_-f: (,:—2——251{((—;%+%1n%)dk+[1 (%—g-,%)dk . (2-85)

where k; is assumed to be sufficiently large.

The adequacy of (2 — 84) on the interval 0 < k < 2 is shown in Fig. 23. A good
comparison between the left and right hand sides of (2 — 84) is indicated. In Fig. 24, the
second two integrands are plotted. The decsy of the Bessel function is rapid, indicating
that a &, of 10 is quite sufficient for a practical evaluation. Figure 25 indicates the rapid
convergence of the trapezoidal rule over a uniform grid giving the desired value of ap and
by as

ag = 0.129558

1 .
b= f k2K (k)/1{k)dk = 0.063409

The small magnitude of aq i3 consistent with the extended validity of the theory for mod-
erate wall height hypothesized earlier.

2.13 Structural Aspects of Slender Body Code

A great degree of flexibility has been built into the finite and large wall height codes,
hereinafter referred to as STINT25. Logical variables have been introduced so that the user
can treat incompressible, linear, and transonic flows within the same code by merely chang-
ing a NAMELIST file. For ensuing checking, parametric studies, and running economies,
provision has been made to start either the free field, wall perturbation parts of the code
independently or run the latter serially after the former. Furthermore, both codes can be
restarted from & previous solution. Finally, considerable diagnostic I/O has also been built
into the codes.

In addition to this logic, a procedure has been conceptualized which can be useful
in obtaining a sharper resolution of the shocks than possible in the previously described
(“upright™) shock notch method. Referring to Fig. 26, the shock is considered to consist
of subarcs of the type shown as 1 and 2 in the figure. In the blow-ups of these regions,
these negative and positively sloped portions can be considered in terms of the proper
difference formulas for the determination of the jump of the vertical component of the
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Fig. 25. Convergence study of ao integration.
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perturbation velocity [v1]. The actual relationship of the points is shown in Figs. 27a-
27c which indicate a bubble over a parabolic arc body at Mach .99. The main idea is
that depending on whether range 1 and 2 is encountered, an upward /downward one sided
difference combination or the reverse is used for obtaining [v;]. A tridiagonal system
for the jump in the wall interference potential will be obtained in this scheme rather
than the bidiagonal system associated with the shock notch method. However, this slight
disadvantage could be outweighed by *Le potential for improved accuracy.

2.14 Incompressible Validation of Inlerference Module RELAXV1

The large height interference (variational equation solver (RELAXV1)) code was
tested to establish whether it could provide answers in agreement with the analytical ones
given in Ref. 37 for incompressible interference pressures. As an illustration, the flow over
a confined parabola of revolution war considered. Here, the confining walls are solid and
cylindrical. Figure 28 indicates the free field surface pressure distributions computed by
an incompressible specialization of the finite height code. It is shown to indicate the stag-
nation (logarithmic singularities) resalved by the SLOR method in 300 iterations. Further
study is needed regarding how the numerics treat the interactions of these singularities
with the walls,

For this case, the RELAXV1 portion of the code camparison with analytical results
from Ref. 37 is shown in Fig. 29 indicating perfect agreement.

Of great interest is the convergence of both the free field (RELAX1) and RELAXV1
parts of the code. During checkout, considerable study of factors influencing this per-
formance aspect was made. Figure 30 illustrates one such investigation which shows the
convergence of the algorithm with number of iterations for free field pressures at different
points along the parabolic body of revolution in incompressible flow. It is evident that at
this speed condition, adequate convergence is achieved in about 500 iterations. A lesser
number of iterations may be needed if & “smarter” than zero initialization is used.

2,15 ‘Transonic Application of Free Field (0!t Order) Code

The numerical formulation indicated in previous sections haa been applied to obtain
an understanding of wall effects on slender bodies. Results will be discussed for a flow over
a parabolic arc body of revolution as an illustration of the behavior of the wall interference
¢ field.

For the calculations to be discussed, & uniform x-grid over the body (in the interval
0 € z < 1) and an exponentially stretched version off of it was employed. Exponential
stretching was also used in the # direction. These variable grids are shown in Fig. 31,

Before discussion of the interference field, the structure of the free field base solution
will be indicated. Figure 32 shows that the numerical solution tracks the analytic behavior
o, reasonebly weill. Considering that the mesh for this case had e large aspect ratio near
§ = 2, improvements could be obtained by configuring the grid to make the aspect ratio
approach unity.
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Fig. 26. Scheme for handling jumps in vertical velocities across shocks.
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As an illustration of the use of the code for high subsonic Mach numbers, Fig. 33
ghows the streamwise distribution of local Mach number at a freestream Mach number
M. = 99 over a fore and aft symmetric parabolic arc of revolution of thickness ratio
§ ~0.1. In the interval 0 < z < 1, the highest curve corresponds to j = 2 and subsequent
Jower curves are associated with upward § increments of 4. The dashed line denotes the
position of the sonic line and shock. The far field computational boundary for the free field
was at # ~ 5.5 in these calculations. It is clear from these results that the sonic line height
is approximately 7 ~ 0.2. Further results consistent with these are shown as the isoMachs
in Fig. 34. A good, sharp shock formation is indicated in this figure. In Fig. 33, the shock
layer structure is indicated. This is of relevance to the use of the shock notch method.
From these level lines, it is evident that the shock is almost normal. This is confirmed
from the vy distributions shown in Figs. 36 and 37, where it is clear that [vo] ~ (. This
lends to simplification of Eq, {2 — 40b) which is the perfurbation form of Prandtl's normal
shock relations, i.e., :

£ o (2 - 86a)

o) = 31 .
[6:] = —————["{i{u}l}' B (2 — 86b)

where uj is the critical value of the perturbation velocity wg. As a check,
Egs. (2 — 86) were computationally implemented and the results were close to those ob-
tained from Eqs. (2 — 79). Figures 38 and 39 indicate the up distributions. Figure 39
shows indeed that Eq. (2 — 86a) is closely satisfied by the computational solutions. In
related work, a hypothesis suggested by C.C. Wu concerning the invariance of the shack
wave intersection with the body was analyzed in Ref. 38. Because of the structure of the
nesr field, this hypothesis asserts that the intersection occurs at a zero of §"(z). Numer-
ical studies such as those discussed give partial but incanclusive evidence to support this
assertion*. More detailed fine grid studies are required to resolve the issue.

To appreciate the rate of decay of the solution and the subsonic nature of the far
field, Figs. 40 and 41 give threc-dimensional reliefs of ¢y and ¢,,. For pointed bodies,
the forcing term of the wall interference (variational equation) is proportional to the latter
quantity. The subsonic structure of the far field is consistent with the assumptions of the
formulation given in Ref. 29.

.1 ks on Difference near Shock

2.16.1 Bidiagonal Approach

In connection with (2 — 40a), and flow tangency, if

[v0] = 0 (2= 87)

* Some aspects that relate to this are discussed in the Appendix.
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Fig. 34. Formation of shock.

69



AEDC-TR-91-24

0.30 |m:0993 iy

00 10 11 %32

x
SHOCK LAYER
CRITICAL VELOCITY

Fig. 35. IsoMachs showing closeup of shock.

29.3
13.9
-1.561

=17.0

-32.4
0

Fig. 36. Perturbation velocity v over the parabolic body at Mo, = 0.99.
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Fig. 41. Three-dimensional relief of ¢y, field for M = 0.99 parabolic arc body.
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is assumed to hold beyond the weaker condition, then Prandtl’s relation for normal shocks

is obtained in which
{“l)=l% ¥ (2-—88)

where { ) signifies an average across the unperturbed shock. Equation (2 — 88) can be
used as & check on the numerical work.

In the bidiagonal scheme of treating (2 — T6a) embodied in Eqgs. (2 — 79), one-sided
differences were used to approximate the vertical perturbation velocities. This leads to the
recursion relation in {2 — 79a). It is clear that the solution of (2 — 76a) proceeds forward
from some initial condition associated with a specified j. Two options are available for this
purpose. Employing the tangency boundary conditions at the body constitutes Methed 1,
and utilizing the top of the shock represents Method 2. Method 2 was first selected due to
the seeming inability of originally assumed Neumann data at j = 2 to provide the needed
Dirichlet data for the starting point. One problem with Method 2 is the possibility of
inaccuracy in prescribing the location of the tip of the shock. Method 1 can be modified
to employ (2 88) instead of Neumann date at the node closest to # = 0, j = 2. This gives

|uol {lrbs;‘-“l)—i'.:.":' + 135."]- Enl:-jl}

2 Arp Ary

[J']z = (2-89)

2Axrn + (un'}
A useful device in the implementation of the bidiagonal scheme (2 ~ 79} and (2 — 89) is

the relaxation . () or (=)
[#] =w 9] + (- w)[e] " (2-90)
The quantity fvo, ], in (2 — 89) is obtained from the zeroth order solution.

The stability of the recursion scheme based on (2 — 79a), (2 - 88), and (2 — 80) has
been investigated. A tool employed is an analytic solution which has been obtained by
variation of parameters. Letting X; = [qb;]j, this is

where the products are unity when the upper limit index is unity. A necessary condition
for stability therefore is
By

D, <1 . (2-92)

We have achieved global convergence with the bidiagonal scheme with marching away
from the body using Method 1, providing that we use a stabilized converged free field
solution and a fresh atart for the interference flow.
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2.16.2 ‘Tridiagonal Methodology

The thrust of this approach is to use second order accurate central difference approx-
imations for the vertical differences rather than the first order one-sided differences of the
previously described bidiagonal method. Employing half node points, the vertical velocity
v; is given by

V3 qaps V10

W; = ¢lfj = 2
¢|-_" _f'l,'-l . (2 = 93)

Fj=Fi—n_

LT Y
Fi41—7

+
2

An additional benefit of this approach is consistency with the treatment of the interior
nodes of the computational domain. Equation (2 — 93) leads to

_ [¢1]5+1 - [¢1],~ 4 [4’1]3- - [¢1]j_,

2 — — — 2—-9
] fier — 7 Fj = Tj- 2-%4)
On the basis of (2 — 84} and (2 — 76a), it follows that
where
= —
A= gai— (2 — 96a)
NN 1)__1 ( . ﬁ) -
Dj=di-7 (A;,-J,, + AF,-) Aoy \% 12 (2 - 964)
e
B;=-——%L 2 — 96
I=oak; ( c)
o (Db
o ! A:I:D A.‘l.'u
(=1} (%) (n) {n)
bj ¢D+1 - ¢'U ‘;U - ¢u-1
+ 2 ( Azp + Azg +C (2 — 96d)
By (2 — 89)
Ay =B =0 (2 —97a)
Dy=1 (2 -97b)
-[‘21 {¢(H-ll)_¢("3 + ¢g|)_¢(-i }
2 Azp Azp
C; = o (2—97c)
L]
aaso T (¥o.)
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At the top of the shock notch j = JSMAX, [f] = [fi],, where [d], is
&NSPMA}[ - &Nspmm computing this difference as an interior point calculation. Then

Dismax =1 ) {2 — 98a)
Cismax = [4]; - (2 —98b)
Equations (2 95)-{2—98) constitute a tridiagonal system which can be cnlved by the same

Thomas method employed for the interior nodes. The scheme has been computationally
implemented and its performance relative to the bidiagonal approach is 2u open question.

2.17 Definitions of Interference-Free Conditions in Wind Tunnels from Asymptotic
Slender Body Code

Rewriting (2 — 24a) slightly, the variational equation fo1 ihe interferen.s perturbation
potential ¢ is

M[¢:] = (Ko — (7 + )do, ) ¢1a. — (v + )10, + %(?‘&51;); = —E F(z,7) (2-99)
with the boundary conditions

$1,(z,0) =0 : (2 — 100a)

é1 =~ by, R? Py(cosw) + 8mwbp BoR cosw + «- - (2 — 1005)

as R — oo, aud the shock relations, where F = ¢y, _, R and w are spherical coordinates, the
constants b}, by heve been defined previously and Pa(cos w) denotes a Legendre Polynomial.
In shorthand notation, Eqs. (2 — 99) and (2 — 100} can be represented as the problem P,
in which

P
M[¢)] = —KuF " 2-99)
B(¢:1] = G(z) , (2 — 100")

where B is the boundary condition on the union of all boundaries including the free field
shock traces. With the decomposition

$r=490n+46p ,
the problems for ¢ and dp can be represented as
Py

M[¢s] =0

B(¢s] = G(z)
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By

M(¢,) = KuF

Bl¢p] =0 .
Since M is a linear operator, ¢, = K; ¥, where ¥ is the solution of Pp with Kj = 1. Thus,

$1=¢n+ K ¥
If
g1(z; K) = ¢l(3:0) '

then

n=a, +K]‘I'](E,U) 1

so that for a specific shape, since the normalized interference drag ACp = ‘5,1:,'.{. =
1 1
o 15'dz,

— _ ~{K1=U) - 1
ACo—a0p  Und) _7(ko4) = [ S, (o0
1 1]

where A = &/6 in the notation of Ref. 20 is the angle of attack parameter, and § is the
noralized cross sectional arca.

With the universal relation above, the curves of ACD versus K, are linear, as schemat-
ically depicted in Fig. 42a, and can be determined once and for all for arbitrary K, from
the solution of the Problemn Pp for K =1 for a given Ko and A.

Because of the linearity with K; as indicated in the previous relations, the value of
K, = K} leading to an interference—free drag measurement can be determined explicitly
from the universsl relation as

Ec},f“‘”(m,.a;)
.f (Kﬂs A]
Plots of K} are shown schematically in Fig. 42b. Here, K7 represents the necessary

perturbation of the tunnel similarity parameter to simulate conditions leading to zero
interference drag. '

Ky = -

(2 - 101)

1 ination orf e-Free Flo

In the preceding sections a formulation of the slender body wall interference prob-
lem in which the tunnel similarity parameter is allowed to vary to achieve minimum to
interference—free flow is formulated. During the contractual effort, & computational so-
Jution has been obtained representing & proof of the feasibility of this concept and salso
validating the mathematical demonstrations of linearity of the interference drag ACp and
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Fig. 42a, Schematic of ACD versus K.

Fig. 42b. Schematic of variation of interference-free K with Kp.
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the tunnel similarity parameter K; given in Section 2.17. Figure 43 represents the result
of actual calculations corroborating the analysis of the previous section for the M., = .99
flow over a parabolic arc of revolution body of thickness ratio = .1. The calculations and
figure demonstrate that interference—{free drag conditions can be achieved in this case at
a tunnel similarity parameter value K; = 0.14166. Additional studies concerning surface
pressure distributions can be performed in which X can be optimized to achieve a min-
imum, for example, in at least & mean square seuse, of the interference pressure. To our
knowledge, these are the firat results of this type to be obtained.

As an approximation of the numerical approash based on the bidiagonal and tridiag-
onal shock jump conditions, a simplified scheme »as been investigated. It is based on the
approximation that for slightly subsonic free stream Mach numbers the shock is normal to
the flow along its length. This leads to the zeroth order Prandtl relations

(“0) = % (ﬂo(yu—,i:) + ug (gu.hi’)) = ._.{{._.

1 (2 — 102)

and Eq. (2 - 87).

For a transition occurring over zerc mesh points, the geometric interpretation of
(2 — 87) is shown in Fig. 44.

2.19 Numerical Implementation

In accord with the previous formulation, a reduced interference perturbation potential
¢y is defined in which the far field is subtracted off. Witk the notation given herein and
assuming a closed body, this gives

¢1=4+Cz (2 - 103a)
8xboBy 1.594B,
= = 2 - 103b
C==T7% = V& (2 - 103)
w=i+C ,

" where by = .063409 from numerical evaluation of the Bessel function integral (Sect. 2.1.2).

De=noting z grid points on the pre-shock side of the shock notch with s subscripts and
those on the post-shock side by p, (2 — 103) can be used to obtain a discretized form of
(2 — 87) which is

} +C= [thll(uo.) =—g1(uo,} (2-104)

1 { $p+1 = ';p 3. - ';a—l
= +
2 Tp+1 — Tp Ty — Ty—1
using (2 — 41b). The sum in the braces in (2 — 104) can be simplified using the definition
of [$] which leads to
‘ll-l-‘l —ﬁ. + ¢l ¢-—1 + 20‘

[¢] = Zz== ;2 =1 : (2 — 105)

’p+l'¢r
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Equation (2 — 105) represents an explicit relationship in which points on the downstiream
side of the notch can be updated in each relaxation sweep of the code. If the shock slope

is non—vanishing, [&] is known only implicitly in the tridiagonal scheme of Section 2.16.2.

.2 ts

The results to be described were computed using the bidiagonal scheme formulated
in Section 2.16.1. Others were obtained with the homogeneous Prandtl relation using the
approach outlined in the last section. These will not be shown here and give similar relative
trends but discrepancies in the actual levels. Because the bidiagonal method contains the
effect of the shock shift as well as the variation of the interference vertical velocity v, along
the shock, it is more accurate than the homogeneous Prandtl method.

In the actual running of the solvers for the 0 order free field basic flow and the 1*
order interference component, convergence of both elements were monitored by studies of
the maximum error ERRMAX over the computational domain. This error is defined as
the difference between the value of the perturbation potential at the current and previous
relaxation sweep. Figure 45a shows the behavior of this error as a function of iteration
number for the 0t order solution. The iteration number is a counter for the relaxation
sweeps across the flow. Although the error decrease is rapid, a more reliable method of
establishing the convergence of the solution is the drag level. This is shown in Fig. 45b.
A pseudo-time asymptotic for the latter signifies stabilization of the shock location and
other flow features. Convergence to the drag for the 0" order solution usually followed the
monotonic pattern indicated with a zero initial iterate. The values of the relaxation and
other parameters for such behavior will be discussed in the user’s manuals. Convergence
of the 0t order solver RELAX] takes about 3000 iterations for the higher subsonic Mach
numbers such as the .99 value of Fig. 45b. Approximately 1000 or less iterations are
required for supersonic or lower subsonic Mach numbers. Figures 46a and 46b demonstrate
the convergence of the interference (variational) solver RELAXV1. In marked contrast to
RELAX1, RELAXV1 is st least ten times faster. Both solvers have restaré capability and
this can accelerate convergence from the performance indicated. One run strategy is to
march in Mach number space using solutions for a lower Mach number to initialize the
salution at a higher Mach number.

Both RELAX1 and RELAXV]1 are scalar and unoptimized in keeping with their re-
search status. Further increases of performance can be achieved by vectorization and other
optimizing techniques, which we anticipate will lead to seconds of run—time on CRAY ma-
chines. The order of magnitude speed increase of the 1** order interference flow code from
the 0 order solver is mssociated with the frozen coefficients in the difference operators
during the sweeps. This is related to the linearization upon the basic flow embodied in the
description of the perturbation interference field.

As a baseline, Fig. 47 gives pressure distributions along a parabolic arc body of
thickness ratio § = .1 for different Mach numbers related to the transonic similarity pa-
remeter K = (1— M2)) /62, Although there appears to be some upstream movement of
the shock as the Mach number is reduced from .99, this may be illusory due to the need
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Fig. 45b. C4 convergence history for 0** order flow, parabolic arc body § = .1, M = .99.
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to numerically resolve the fine structure of the layer near the logarithmically singular line
# = 0. A 1ecent hypothesis proposed by C.C. Wu and analyzed in detail by J.D. Cole and
N. Malmuth in Ref. 38 indicates that the foot of the shock occurs at the zero of §"'(z) at
the rear of the body. This assertion is based on consistency arguments involving the inner
expansion of transonic slender body theory, Prandtl's normal shock relations, and the flow
tangency condition at the body. Fine grid solutions are required to investigate this nsser-
tion. In addition, there is probably & high z gradient deck neer the shock impingement
point which asymptotes to the logarithmic layer behavior upstream and downstream of
itself*. On the other hand, there is another scenario in which the shock doea not strike
1he body but makes an abrupt turn above it. Evidence to supvosi the first contention
is shown in Figs. 33-35 in which the location is very nearly 2% » downstrcam §”(z) = 0
point = 1 + ¥I = 7887 for the fore snd aft symmetric parabolic arc body exemplified
here. More detailed study is required on the formation of the envelepe of the compressive
waves reflected downstream from the sonic line, since focussing, and the structure of the
inner # —+ ( layer has a bearing on the use of an internal upright notch which encapsulates
the shock transition in the calculation of the interference flow. Surface pressures for the
latter are shown in Fig. 48. The anticipated increase in suction over the forebody is in-
dicated and is associated with the constrictive effect of the walls giving an acceleration of
the flow over the model. However, there is a sharp compressive spike near the shock. It is
interesting to note that the upstream level is qualitatively and phenomenologically similar
to that exhibited by the incompressible flow analyzed in Ref. 37, whose transform solution
was used to validate the incompressible specialization of the 0** order solver RELAX1
in Fig. 29. This agrees with the qualitative features of the subsonic flow aw7ay from the
sonic region. Clearly evident in that figure is the nearly constant level of ihe interference
pressures associated with the doublet reflection of the solid walls. This appears &s the far
field singularity in the formulation of the problem. A rapid localized violent transition
spike at the shock interrupts this serene behavior. It is anticipated that the intemsity of
this spike will be reduced by shock-boundary layer interactions in real flows.

For the case shown, the pressures have the proper antisymmetry about the dotted line
in the figure which represents the appropriate average levels from the perturbation form
of the Prandt] normal shock relations specialized at the foot of the shock. If the latter
strikes the body, the boundary condition of tangent flow implies [11] = 0 implying that
the line of intersection is along the normal to the body. This trend is similarly exhibited
as shown in Figure 49 which gives an indication of the lumped normalized interference
pressure dependence on Mach number through the similarity parameter K. In accord with
expectations, the interference increases with increase in Mach number.

Returning to the Mo, = .99 case, Fig. 50 shows in exaggerated form the tunnel
pressure when the interference pressure is superimposed on the free field basic flow. Again,
the antisymmetry about the critical pressure level shown as the dotted line is evident as a
check on the computational implementation.

One issue that arose in the computations was the sensitivity of the convergence of

¥ See Appendix A reparding this issue.
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Fig. 47. Free field 0** order C,, for vatious Mach numbers, § = .1 parabolic arc body.
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Fig. 47. Free field 0" order C, for various Mach numbers, § = .1 parabolic arc body.
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interference flow to notch dimensions. This was pronounced for the bidiagonal recursion
scheme for computing [&] at the shock but much less evident in the tridiagonal approach

described previously. For the calculations, the proper shoek tip location and notch width
had to be used. An approximation for the upsiream and downstream legs of the notch
was obtained by a detection scheme implemented in RELAX1 in which the most upstream
and downstream location of the downstream part of the sonic line was determined. The
shock tip ves defined as the subset of this Jocus for which the pressure grudient exceeded
a preassigned tolerance level, Some experimentation is required in adjusting the width
of the notch. This was accomplished most efficiently through the use in the cortrol file
LOGPARM®> RMS of indices NU, ND, JDEL which represent incremental chang-.a in the
upsiream and downstream notch vertical boundaries at the z grid indices NSPMIN and
NSPMAX respectively and the # grid index JSMAX. Some adjustment of these parameters
was necessary to prevent divergence. This inconvenience of the bidiagonal scheme cver
the tridiagonal method was tolerated because it wes felt that divergence was A desirable
sensitive indicator of an inappropriate encapsulation of the shock. In particular, too narrow
a notch allowed artificial numerical fluctuations in the 0** order shock layer to destabilize
the 1% order interference flow. Moreover, too large or too small a value of JSMAX was
agsociated with an improper location of the shock tip. In fact, for the Mo = 96 case,
no shock occurs in this supercritical flow and & truly isentropic transition is obtained.
Logic in the code was developed to handle this degenerate situation. At the higher Mach
numbers, once a base level was obtained for convergence through proper selection of NU,
ND and JDEL, rather substantiel parametric elasticity was exhibited. The broad band of
this tuning is indicated in Fig. 51 which shows that the main features of the interference
pressure distribution are retained with perturbations of these parameters. This tuning is
more delicate at the lower M., due to the diffusion of the shock and its deviation from
normality at its foot.

Corresponding to these pressures, Fig. 52 shows the Mach number dependence of the
interference drag. In spite of the generally increased test section Mach number due to the
constrictive effect of the walls, there appears to be an interference thrust at the higher
tunnel Mach numbers which increases with Mach mumber as the latter approaches unity
from below. This is presumably due to the incressing net suction force on the forebody.
A similar trend occurs for all the bodies tested in Ref. 36. The thrust also increases with
blockage ratio, again in agreement with Ref. 20. However, before a quantitative com-
parison with experiment is attempted, sting effects should be incorporated. In addition,
the database of Ref. 36 is for slotted rather than solid walls. It also represents values of
H < 0.3 in contrast to the large H resulis given herein. The sting effect will add the
additional term to the far field given in Ref. 26.
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Fig. 51. Sensitivity of interference pressures to notch size parameters, parabolic arc body,
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7 PARABOLIC ARC BODY IN CYLINDRICAL TUNNEL

(SOLID WALLS, M<1)

-0.005 T T T I T I T T T I T ] T
1 2 ] 4 5 6 7 8

K=(1-M?)/8’

Fig. 52. Normalized interference drag ACpH®/é* as a function of transonic similarity
parameter K = (1 — M2%) /6.
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ARG SPECT O CONFIG TONS

In this, section, transonic wall interference of configurations having high espect ratio
wings will be treated. The main emphasis of the theoretical and computational effort is the
treatment of wing-alone cases. There is evidence to support the belief that the wing inter-
ference dominates many high aspect ratio wing-body shapes of practical importance. In
spite of this, some discuseion will in fact be given to wing-body arrangements. Rather than
being concerned with the development of a production code, the exposition that follows
will emphasize structural and mathematical features of the flow field and the description
of a research code thet provides information on these aspecis.

3.1 Theory of Far Field Boundary Conditions

A basic feature of the asymptotic theory of wind tunnel wall corrections on high as-
pect Tatio wings to be presented is that it systematically accounts for the influence of
the wall modification of the far field induced downwash on the nearly two-dimensional
near field flow over the wing. In Section 3.1.1, this coriection is obtained for free jet and
solid walls. For convenience and without great loss of generality and utility, the analysis
is limited to circular test sections, although the initial setup had been made for rectan-
gular test sections in Ref. 29. Section 3.1.2 generalizes the analysis of Section 3.1.1 to
account for pressure distributions described on a cylindrical control surface. This part of
the effort is motivated by wall interference—assessment—correction (WIAC) methods which
use edditional pressure measurements on such a control surface to account for factors not
present in classical boundary condition simulations such as that of Scction 3.1.1 and the
usual perforated and slotted wall “radiation” and “cblique derivative” boundary condi-
tions. The additional measurements combined with large—scale computational simulations
such as that discussed in Ref. 39 can be used to determine if a wall correction is feasible
and evaluate it quantitatively.

3.1.1 Solid Wall and Free Jet Correctiops

An outline of the treatment of closed (solid wall) rectangular cross section test sections
is given in Ref. 29. The treatment of pressure specified boundary condition has similarities
to the solid wall case and important differences. For a large span wing in a tunnel of
comparably large lateral dimensions* both the solid wall and pressure specified case have
an asymptotic flow structure similar to an unconfined large aspect ratio case. The near
field flow is essentially two dimensional at each span station (strip theory) but with an
incidence field modified by downwash associated with the trailing vortex system related to
the large but finite aspect ratio. These ideas were the basis of Prandil’s lifting line theory
and have been formalized for transonic speeds as & systematic asymptotic approximation
by Cook and Cole in Ref. 82. To our knowledge, no one has treated the confined case,
even at incompressible speeds using matched asymptotic procedures.

* Other limits are possible such as the span tending to co at a slower rate than the
tunnel’s lateral dimensions.
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Both the solid wall and pressure specified situations have nearly two—dimensional near
fields which in the asymptotic formulation reduce to the previously outlined strip theory.
The finite aspect ratio downwash correction is evaluated from matching with a vortex sheet
emanating from a lifiing line modeling the far field (outer low) behavior of the finite span
wing. What is different in the three cases is the nature of this downwash correction and
the structure of the far field flow. For the free field case, the near field incidence correction
is obtained from vortex and divortex representations of the lifting line. These can be also
1clated to a doublet sheet representation as well as Biot Savart’s law. For the confined
cases, the vortex and divortex elements on the doublet sheet must be properly imaged in
order i satisfy the wall conditions. This imaging is obviously different for the solid and
pressure specified cases and will thus produce differing incidence corvections in the near

(inner flow) field.

In accord with the formulation of Ref. 29, the dominant order equation for the far
fierd flow is the Prandt]-Glauert equation. This is true providing that she far field relaxes
to subsonic flow, and is usually associated with high subsonic freestream Mach numbers.
Slightly supersonic upstream flows which were not treated in the contract require a different
far field treatment, involving the interaction of the characteristics or Mach waves with the
coatrol surface or walls.

The Prandtl-Glauert outer flow problem can be rescaled by a stretching in the free-
stream direction to give & problem mathematically equivalent to the incompressible prob-
lemn (Prandtl-Glauert/Goethert rules). This problem reduces to the determination of the
near field potential of a doublet sheet accounting for interactions with a control surface
boundary on which pressures are specified. These features are shown schematically in
Fig. 53 for a rectangular cross section control surface Sy + Sy enclosed within a rectan-
gular cross section tunnel. According to the preceding discussion, pressure distributions
obtained from measurements are asasumed given on the control surface. An integral rep-
resentation for the perturbation potential ¢ of the doublet sheet Sw can be obtained by
using Green’s formula. Introducing the Green’s function G corresponding to a point source
satisfying homogeneous Dirichlet conditions on the wall allows the wall effect to be char-
ecterized in terms of the control surface specified pressure distributions and removes a
redundant term involving the normal velocity.

Since C, is proportional to ¢,, where z is the streamwise coordinate, an integration
with respect to = converts the problem of specifying ¢, to one in which inhomogeneous
Dirichlet (4) data are given on the control surface.

3.1.1.2 Analysis

As has been indicated in Ref. 29, the appropriate asymptotic expansion for the velocity
potential & governing transonic small disturbance flow over the high aspect ratio wing
shown in Fig. 54 is

&

o= +6 4 d 5 H,BK) +- (3-1)
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Fig. 53. Lifting line in rectangular cross section wind tunnel.

where U/ is the freestream velocity, M is the freestream Mach number, b is the span,
h is the tunnel dimensionless radius, § = wing thickness ratio, (z,y,2) are Cartesian
coordinates, r, 8,z cylindrical coordinates shown in Fig. 54, § = 8%y, 2 = §'/%2, H =
6Pk, B = AH = §'/%, K = (1 — MZ,) /6*/* are fixed as § — 0, where A is a fixed span to
height parameter making the aspect ratio effect the same size as the wall interference. On
substitution of (3 — 1) into the exact equations, the following small disturbance equation
for the perturbation potential ¢ results

(K = (v +1)¢z) bz + 035+ 022 =0 (3-2)
or in cylindrical coordinates:
(K = (7+ 10b) dos + 3 (Fb)y + 5dna=0 (3-2)

In the strained (tilde} coordinate system, the tunnel wall boundary is at ¥ = X. Since the
pressure coeflicient C), is given by

C, = —28%%¢, (3-3)
prescribing the pressure at the wall is equivalent to specifying ¢ there. In fact, measured
C,'s on the wall or some control surface can be regarded as & known left hand side of (3~3)
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VORTEX SHEET

Fig. 54. High aspect ratio wing within cylindrical pressure specified control surface.

from which ¢ can be obtained by an integration with respect to z from some convenient
downstream station such as —o0 up tc the current z value. Anticipating the z scaling in
an outer limit, the resulting Dirichlet boundary condition for ¢ can be written as

$(z,H,0) =W (%,a) , (3-4)
In accord with previous remarks, an outer expansion which gives a lifting line structure to
the high aspect ratio wing as H — oo is

. log H 1
(2§ 5 H) = pol(a*, 4%, 2") + —o—p1s + 101 + - (3-8)
H H
which holds in an outer limit
._ e ¥ £ _
=g . V=g o, 2 HﬁxedaaH—roo. (3-6)

The transverse straining embodied in the starred variables keeps the walls fixed in the
starred coordinate system in the limit (3 — 6). The outer boundary value problem for the
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dominant term 2y of the lifting line expansion is

1 1
K‘Po:, + ‘PI),.-,.- + r_‘wnr. + E‘Po" = 0 (3 —_ 7“)
pofz",1.8) = W(z",6) (3-78)
o] =T(z") onthe wakes™ > 0,3" =0, -A<2z" <A (3—7¢)

where the [ ] signifies the jump across the vortex sheet shown in Fig. 55 and is propor-
ticnal to the local circulation at the span station z°.

Fig. 55. Far field flow configuration showing lifting line and vortex sheet.

The main result to be obtained in what follows will be the downwash at the loaded
line, i.e., the value of @ . (2, ¥*,z*} a5 3%, y* — 0, z* fixed.

If W(z*,0) = 0 in (3 — 7b), then the boundary condition on the cylindrical control
surface r* = 1 shown in Fig. 55 corresponds to a free jet. The corresponding solid wall
condition is

%(w-,l,a) ~0 . (3-8)

An integral representation for ¢y can be obtained by scaling out the K factor in Eq. (3—7a)
a8 in Refs. 30 and 32 with

f=y"/K,2=2'|K (3 —9a)

and .
tand = 2/ (3 —95)
7 = g% 4 3? (8 —9¢c)
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so that the Prandtl-Glauert equation (3 — 7a) transforms to Laplace’s equation in three
dimensions. Application of Green’s theorem to the boundary value problem for this equa-
tion with boundary conditions (3 — 7b,c) in the cyliudrical region enclosed by the surfaces
Socy S—oos Sw, and S¢ leads to the following integral representation

¢ = I, + Leatts (3 - 10“)

where
I, = j fs (4] (%g) d5 (3 - 105)
Lo = [ 45ds (3 10c)

where G denotes the Green's function, n is the outward drawn normal, S, is the vortex
sheet surface, and Syal, i8 the wall surface.

In the coordinates shown in Fig. 56, and assuming for convenience that the transonic
similarity parameter of the free field, Kp, appearing in Eqs. (54) of Ref. 25* is unity,
Eqgs. (3 — 10) imply that

B o a hY
=- —G(z* *. ! -
n=- [ [T {eE wrieng) (3 - 11a)

SC.OM80-CS

g = a " % ]
Iw..lh =j dff ¢{a—G($ , T ,9;£,p,6 ']} odG’ N
-0 JO 0P o=t

Fig. 56. Angular variables for Green's function associated with cylindrical walls.

* The results that follow can be easily generalized to arbitrary Kg by the scale trans-
formation X = z* /K used in Ref, 29,
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where A = the tunnel radius in units of the root chord, b is the span in the same units,
and B = §/°b, H = §'%h, u = H/B = hfb. In addition, 7({) = spanwise loading
= [¢] = $(£,0+,¢) — 6(£,0—,0), =* = z/B, y* = 51,3!’/3-’ = 6]’33/33 b = wing
maximum thickness, 2, y, and z are the Cartesian coordinates normalized to the root
chord. In what follows, the star subscripts will be dropped.

As previously discussed, the open jet wind tunnel wall boundary condition
$(z,p,0) =0 (3-12)

corresponding to constan! pressure on the jet was assumed. For this case, Gz, u,6) =
Twalls = 0. The Green’s Function for this problem is applicable to the generalization involving
pressure—-specified boundary conditions on & control surface surrounding the lest article.

The appropriate Green's function satisfying a homogeneous Dirichlet eondition such
88 Eq. (3 —12) on the walls is

_ 1 i — & e~ Anal==41 J (X p ) (Ankp) _
G= g 2 coonlf ”z.,: An [74 (hmttt)]* (3-13)

n=-—=00

where
)'nkﬂ = J.nk y

Jnk are the zeros of the J,, Bessel function given by

Jn(Gne) =0 (3—-14)
and 3720 _ () =32 jeal--), whereep =1, en =2, 2 > 0.
An alternste representaticn for 7 is given by

-]

G = —%- oon(ﬂ—&')[umcoeﬁ(x—z')I,.(Er'){K..(Er)_.

I.(¢H)

(3-15)

Equation (3 — 15) is in a particularly advantageous form in which the free field com-

ponent can be separated out in the determination of the wall interference effect. In fact,

the first term in the braces leads to the singular part of &G, which is a point source in the

free field. When this is integrated from z = 0 to oo and across the span, it gives the free

field potential of a loaded line, that is, the dominant approximation of lifting line theory,
which is

_1r =z I v
¢1.L—4,j_,'r(0{‘+m}{yzﬂz_,;)a}ds'

This can be shown from the Addition Theorem for the modified Bessel functions

oo

Y cosn(f — 8')I.(¢r)Ka(ér') = Ko(ER) (3 ~ 16a)
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R =12 4¢" — 2r' cos(f — &) (3 — 165)
and the cosine transform
1 [= Nae — 1
_F./u- Kn(ER)oosE(x-—a:)dE——"mm . (3-17)

Thus, the free field potential of a unit intensity isolated source is the right hand side of
(3 — 17) which by Eqs. (8 — 16) is represented by the first integral in (3 — 15).

Returning to (3 — 11a), the inner integral represents the potential ¢y of a line doublet
parallel to the z—axis in the 5 = 0 plane and at the span location {. Performing the
indicated operations,

= oG
do =./; *a—” w_DdE
—.\nk:)
>0 (3—18)
9 _ g~ AnkE
2“!‘2( g_:wn sinn (9+ ) E Ai(k {J’l ( nw;}, Jo ner) Ja(Anrl)
¢<0 . (3-19)

Of key interest is the behavior of ¢¢ and I, as x,y ~» 0. This is the essential result sought
in determining the downwash on the loaded line and matching with the inner solution. To
determine this behavior, ¢g can be further decomposed as fellows:

B
bo=51—-5 , L= j RIGIE (38— 20)

where, without loss of generality, onty { > 0 will be considered®, and

2Jn (AneT) Jn (An
5= ,._E_.,““‘““”; Afi [.;:‘EA,.EL)];C) -
nsi '\"H:Jn(}-nkr) I (AnkC) _ l
2«#’( ,,_Z_oo nnoz A2, [ ()] ’ (-2

where § =8 — = /2.
‘I'wo primary steps are employed to obtain the desired result. These ave:

* Extension to { < 0 is trivial.
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1. Recognize that S; represents a two—dimensional vortex in the Trefftz plane (and math-
ematically prove it using the properties of Fourier-Bessel series).

2. Separate out the free field line doublet from Sz by using & process resembling Kum-
mer’s transformation to accelerate the convergence of the series. It consists of sub-
tracting and adding the “tail” of the series which represents the singular part of the
Green's function associated with the free field.

Evaluation of §;

Consider the line source

=Lma@mm&m0ﬁ ,

then
, 1 & i 5 In (Ankr) In (Anip)
G*(0,7,6,0,8 )= —— cosn(d —8")
2rp? ,.-Z..:m g X2 [J8 (Anets)])” (3 - 22)
%G (co,r,6;p,8) .

From (3.13.4), p. 134 of Ref. 40, the inner sum can be evaluated as a limit of 2 Fourier
Bessel series. Noting that

5 Tn (jnag) In (jur ) P (£) {J,.(r)}" (F) Ja (ﬁ) Yn(f}} (3—23)

x ok [Ji(jnt)]z =0 4 Ju{7)

and using the asymptotic properties of the Bessel functions es v — 0, from Ref. 41, 9.17
and 9.19, Eq. (3 — 22) becomes

G*(0,r,8 ,p,ﬂ')— {ln;_a 2 { "}oosn(a—ﬂ')} :

n=1

D<r<p<l (3 - 24a)
1 o~ (o

=i {lnﬂ—nz-_-l:{r__—r_} cosn(a-ﬂ')} ,
0<p<zr<l1 (3 —24b)

where r = r/u and p = pfp. Introducing the complex variables Z = z + 1y, Z' = { + i,
Egs. (3 — 24) can be represented as a geometric series which can be summed. This gives
for p=1,

G*(0,r, 0+ ,8') = —4% {log |Z — Z'| —log

z—--‘,i,—,\-mrﬂ} . (3 25)
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Equations (3 — 22) and (3 — 25) demonstrate that the line source appears as a two-
dimensional source reflected in the walls in the Trefftz or £ = 0 plane. The first term of
Eq. (3 — 25) is a free-field source at the point Z’. The second and third terms are the
image of this singularity in the walls using the inversion point 1 [Z'. Equation (3 — 25)
represents the classical formula for the Green’s function of the first kind for a unit circle.

To evaluate S), it can be shown that

aG*
an

and therefore from Eq. (3 — 25), with 2’ = ¢ on the reals,

S1=

1
=0

2
s =Y 1 I

I CRERT [

(3 — 26)

In accord with the previous discussion, the first term in Eq. {3 — 26) represents a two-
dimensional doublet in a free field, and the second its image in the circular projection of
the walls. The plus sign in (3 — 26) corresponds to a free jet, a negative sign is associated
with solid walls.

Evaluation of S

To implement Step 2, some preliminary processing of S is required. Accordingly, let

s 1 = .
S = a—: = ~Znit ngmnmnnﬂgmn(w,r;o (3 — 27a)
_M'H:Jn ()‘nkr) JIn (AukC)
$in = - 327
T O] @
and .
Sz — 52(0) = f Sadz . {3 —- 28)
0
Also, let 5
u
Sy = ) (3-29)
Then, using Kummer’s transformation
u=U+ Z cosnﬁZ(mn—‘I'h) (3 —30)
a=—c0 k=1
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o0 oo

Q:ZZ@in (3_31)
k=1n=o0
Ppn = B —kme/n 000 ndJ, (km") JIn (kw() . (3-—32)
2 T H

The W, defined in Eq. (3 — 32) represent the aaympt.ot:c behavior of ¢in in the limit
k/in — oo as k — oo, Also, the :nterchange of sums in Eq. (3 ~ 31) 18 assumed to be
legitimate.

The quantity IJ is evaluated as follows: Noting from Eq. (3—-31)

U= %k g—kxz/p Z cosnflJy (k:‘rr) Jn (ﬂ) . (3 — 33)

. A=00 “

from the Addition Theorem,

z cosngl, (wkr) 7. (wk() 7o (karR)

N —oo s H H
R=+/71+y? +(z = (P

and the Schloemilch series referred to in Refs. 40 and 41,

p=+t { + E[z ] (1)1 B3 T Paacs (%)} . B-39)
where —
R=R/u
X =2z/u
Bs,, = Bernoulli number
P, = Legendre polynomial
Noting that

1
S2(0) = 551 ;

and performing the integrations and differentiations of Eqs. (3—28) and (3-29), it follows
that

1 2
5, ¥ M

Il GRS +c’[(’f—‘?)a+u’]

vz
R ET LR

+ iy Y ez — (P

n=2

(3-35)

103



AEDC-TR-81-24

where the O(zy) terms arise from the second sum in Eq. (330} and the term proportional
to 2%y comes from the last sum in Eq. (3 —34). Both of these are assumed to be negligible
regular functions compared to the singular contributiona shown. Because the singular part
has been subtracted off, the convergence of the second sum is anticipated to be rapid. The
last term in Eq. (3 — 35) is the dominant term of the sum in Eq, (3 — 34) evaluated by use
of the expansion of P,() as a finite series in v, and summing by rows instead of columns.

Discussion
From Egs. (3 — 11), (3 —20), (3 — 26), and (3 — 35)*, the desired expression for I, is:

_y [, 1 z
n=g/, "‘O‘{ [{z—()* ¥ y=] {” VAtr -0
®

2 (3 - 36)

d:fz [(Z _‘:?! )2 W] }dc + O(zy)

®

Equation (3 — 36) provides the dominant inner behavior of the outer solution for the
open wall (free jet) case. It contains terms @ which correspond to the free field and @
which are associated with the wall effect. For a solid wall, the sign of @ is negative.

The implication of Eq. (3 — 36) on the matching of the transonic Lfting line theory
of unconfined high aspect ratio wings given in Ref. 30 is that the horseshoe vortex system
because of its imaging in the walls modifies the near field downwash by an amount asso-
ciated with the term @ . Structurally, the matching elements between the outer and
inner solution are otherwise unchanged.

3.1.2 Pressure Specified Boundary Conditions

In the previous section, the modification of the downwash on the loaded line to free
jet and solid wall boundary conditions for high aspect ratio wings was considered. In this
section, the effect of specification of arbitrary boundary conditions on a cylindrical control
surface enclosing a high aspect ratio wing will be derived.

Referring to Eq. (3 — 7b), a decisive step in achieving this result is to split @ as
follows:
vo=wrt+ec . (3-37)

In (3 — 37), @7 is the potential associated with free jet boundary conditions, i.e.,
wiz,1,0) =0 .

* An alternate analysis was performed leading to the same results which used asymptotic
treatment of Fourier transform representations of the far field flow based on Tauberian
theorems.
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The quantity s satisfies the jump condition (3 — 7c). Since the outer problem is linear,
we can satisfy the remaining boundary condition by setting
po(z",1,6) = W(2*,8) (3-38)
and [ng] = 0 on the wake. Note also by linearity that ¢; and . both satisfy (3 — 7a).

The problem for the correctiun potential can be solved by Fourier transforms and
eigenfunction expansions. The appropriate exponential Fourier transform pair is

reo
Pe = ] e**&(k,r*, 0)dk (3 — 89a)
-0
1 [ _ipa
G= f i (gt ot O)dz® (3 — 395)
27 Jowo
Also, W can be represented as
W= [ e =W, kdk . (8 — 40)

Accordingly, the subsidiary equation for ¢ is
N T g
rpr-.-+;-;so.-+;ﬁwo—ffk g=0 . (8-41)

Equation (3 — 41} can be solved by eigenfunction expansions. By separation of variables
the Sturm Liouville problems for the eigenfunctions Ra(r*) and Tn(8) are

T + X7, =0 (8 —42a)
PR 4R, — (K" + A)Ra =0 . (3 —42b)
The T, and A, can be obtained from the conditions
@(r*,8) = o(r*,-6)
w(r®, 8+ 21) = p(r*,0)

and are T, = cosnd, A, = n = 0,1,2,3,---. Equation (3 — 42b) is the modified Bessel
equation, whose solutions are

L{kvEKr*)
Ko(kvVEr)
The K, solutions are discarded since they violate an additional condition that . is

bounded as r* — 0. The resulting eigenfunction expansion for ¢ can thus be written
a8

Ra(r*) =

7 = Aplo(kVE™) + i AL (kVEKr*)cosnb . (8 —48)
n=1
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Whriting the transform of (3 — 7b) as

#1,8) = W(k,0) |, (3-44)

@ can be obtained as

~ Li(kvVEr) I(kvVEr*) .
= {Wik 8 + cosnd 3 —45
¥ ((,))I(kv’_) "2__1“()1“(’5‘\/_) ( )
where
(W(k,8) = - f W(k,0)d8 (3 — 460)
Walk) = 2 f W(k,8)cos nédd . (3 — 465)
[}
The desired results can be obtained by examining (3 « 45) in the limit y* — 0. Since
cosfd = - :-I-z“ ¥, this corresponds to § — §. Some useful asymptotic expansions in
this limit are
cos(2n — 1)8 = (—1)""'(2n — 1) cos § + O(y**) (3 — 47a)
cos2né = (-1)"* + O(y*?) (3 — 47b)
forn=1,2,3, fixed.
Letting
I (kvVEr*)
Gn =W, (b)———— ,
n( ) In(k\/f?)

then splitting the sum into odd and even components as follows,

f:(' o) = i Gap cos 2nf + i Gan—1cos(2n —1)8

n=1 n=1 n=1
and noting that
Lon(kVEr™) £ L (kVE2*) + O*?)
gives
_ = n— _ I!n—l(k\/f_{z‘)
Pye (k,0,2%) = E( 1)"1(2n 1)W2,._1(k)—-——fh_1(k g
or

Izn—1(k\/_&' )

pr(e,08) = 5 St - ) [ o w (Tt B a
n=1 % n—
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8o that
Fy+(0,0,2) = 1 2( ~1ien -1 [ W,,._l(:e) dk
By virtue of (3 — 46),
W (k,8) = Wolk) + 3 Wa(k)cosn8 (8 — 48a)
k=1
W(z*,8) = Wo(z*) + i W,(z")cosnf . (3 — 485)
k=1
Also, -
ﬁgﬂ__l = j_ Wgn_l(a:')e""“"dz’
Thus oo -
Ge (0,0,2%) = _1)*}(2n - 1) f Wan_1(c*)dz*
(3 —49)
w fm e—lk:' Izﬂ— (kﬁz*)
] I!n—l(h\/_)
Here,

Wan-1(z") = .12; A " W(z*,8) cos(2n — 1)9df

If it is assumed that all higher harmonics such as n = 2,8, - - are gero in (3 — 48b), then
(3 ~ 49) simplifies to

LR ) * —|k=‘I1(k\/_z) -
(z")dz /_mc LT (3 - 50)

The inner integral in (3 —49) can be evaluated by residues. The poles are pure imaginaries
given by

Wc'o

k= ijl‘l.l y 8= 1,23,
where the j,, are the zeros of J,, ie,
Jﬂ(jna) =0

which are all reel and simple.

The higher order pole at k = 0 is negligible since the integrand is bounded at the
origin. | k = £ 4 in, then the asymptotic behavior of the integrand is

itz 1 L(kVEz") _

—(VE|z"—1]4|5|2") k| — <0,z*>0,|z<1
T (kVE) ofe ) s Ikl—oon<0,2* >0,

(3-51)
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which implies that the inversion integral can be evaluated by summing residues inside a
semicircle (|} = R, g < 0) in the lower half plane as shown in Fig. 57. Equation (3 — 51)
insures that the integral will converge. Summing the residues g.ves finally after some
interchange of the orders of integration

P00, = 2 3 (1P JJP(:::)) e~ 1, (2)da® (3~ 52)

e ®

-iins

Fig. 57. Contour for inversion of the inner integral in Eq. (3 — 51}

where the continuation of the inversion for z* < 0 has been made. Now the integral in
(3 — 49) can be expressed as

f_ : e Ml f(a)ds = 2 fn e {£(0) + O(A™)) du
= 2{f@) + 00}

if the integrand is expanded assuming that X is large. This can be a useful approximation
since jns = 3.83171. It implies finally that

n=1,35, 1
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If the higher harmonics are neglected, due to the rapidity of convergence of the series,

(3 — 58) reduces to
. 2 Wh(0) J; (Juuz")
«(0,0, . — -
(0, 0,27) vVEz* ju  J1(n)

(3— 53"

where o ¢
Wa(0) = - f W {0, 8) cos nfdf
0
Thus, o oblain the wall interference sssociated with a series of pressure measurements on

e control cylinder, only those at the location of the wing are important. Equations (§ - 58)
give the effect of non—zero wall pressuve on the downwash at the loaded line,

3.2 Numerical Procedures and Qutline of Code

A formulation of the high aspect ratio problem is given in Ref. 20. As indicated in
Section 3.1.1.2, the asymptotic expansion for the velocity potential & is

5 = +86(a, 5, 5K, A H,B) + -, (3-1)
which is valid in the Kerman Guderley (KG) limit
_ 2
p,G=68y, ;=67 K= lp—fw-.A= %,B=6”“b,H= K63 fixed as § — 0,
(3 — B54)

where § = thickness ratio, b = semispan in units of wing root chord, M, = Mach number,
h = open jet, closed wall, pressure specified control surface radivs in units of wing root
chord, and o = wing geometric angle of attack.

Within the KG limit (3 — 54), a secondary (confined lifting line) limit is considered for
a high aspect ratio wing in which the wall interference is of the same order aa the three-

dimensional effect associated with finite aspect ratio. Accordingly, in an “inner limit" near
the wing, the flow field is almost two dimensional with

¢(zlﬁi§= As K, ﬁ) = ¢0{3|ﬁ;A0: Kﬂ:f-‘) + %151{3: ﬁ!zm;Aﬂ!Ah.u! Kﬂ!Kl) g (3 - 55“)

1 .
K=KD+EK1+"' (3_555)
A=A.,+%A1+--- (3 — 53c)
in the inner limit
z* =%,z,ﬁ,p=%=% fixed as B — oo, & — 0 independently. (3 — b6)

As indicated in Ref. 29, the far field for the inner problem for the finite aspect ratio,
wall interference correction ¢; is governed by a far field associated with an outer problem
corresponding to & bound vortex shedding a trailing vortex sheet.

In what follows, the formulation and description of the pilot lifting line code accounting
for wind tunnel wall interference will be given. The analyses will assume without excessive
loss of generality that K; = 4, =0,
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8.2.1 Boundary Value Problem for ¢

3.2.1.1 Analytic Formulation

Input Parameters

The airfoil shape shown in Fig. 58 is given by yus = 6Fye(z)z] £ 1,
max |F| = 1,u ~ upper surface, £ ~ lower surface

Angle of attack: o
Ratio of specific heats: 7 =14
Transonic similarity parameter: & = %:ﬂ- ;

(or, for Krupp scaling, K = -&'}:&z)

Boundary Value Problem
(K — (7 + 1)do,) b0, + oy =0 (83 — 57a)
b, ( 0t)= D Fyz)—A , A=2 , |z/<1 (3 — 57
ﬂgm! _am w t\Z) — 3 —6 L] ] - )
[$o)go =T for > 1 [Kutta — Joukowski condition] {3—57¢)
L6, (+ )M lar
¢0—»—2w+ =T cosf + asr ~+ 00,058 < 2x

( =22+ K (3 — B7d)

(9 = tan™} -@)

z

A rectangular computational grid schematically indicated in Fig. 59 is employed which
is approximately uniform on and near the wing, with geometric stretching in the far field.
(There is a capability to adapt the grid spacing on the wing to the airfoil shape, as indicated
subsequently.) The grid is displaced from § = 0 and from the singularities at (-1,0) and
(1,0).

Solution values are stored in PHI(1:IMAX,1:JMAX), with an extra row/column for
the boundary values.

The airfoil ordinates are input in a table, then interpolated and differentiated (using
smoothed cubic splines) to get the Neumann body boundary conditions. A parabolic are
airfoil and the NACA 00nn series are available analytically.

Equation (3 — 57a) is solved by successive line overrelaxation (SLOR), based on tech-
niques developed in Refs. 31, 33-35, and 42, solving the finite difference equations a line
at & time, from i=1 to i=IMAX.
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§C37846

AIRFOIL GEOMETRY
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L=2 —| d=AfL

T.‘.

Fig. 58. Airfuil geometry.
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Fig. 59. Computational grid.

111



AEDC-TR-91-24

Basically, 3—point centered differences are used. The grid can be nonuniform. The
differentiation formulas employed are:

.h]_ hg . _ h hz—hl h 2
1—1 1 t-+1 ¢0ai - h (hl_l_h )¢0. I h!hz ¢ hz(h +h )¢D.+1 +O(h )

2 2 2
e = T TP T ket Tl B P

Set pi; = K — (4 1), ., using this central difference. Then p;,; controls the type of
the equation at (¢, ). There are four cases which are tabulated in Table 1:

+ O(h?)

Table 1. Type Sensitive Switches Employed by ¢¢ Modules

ti-1,5 | mi; | Typeof Point | Representation of (K — (7 + 1)d0. ) do..
(i) >0 >0 elliptic fi,j0,0:; [contrel differencing]

(ii) <0 <0 hyperbolic Hi-1,jP0,.., [backward differencing]

(1) >0 <0 parabolic 0 [p~0 any way]

(iv) <0 >0 shock (i) + (i)

The representations for Cases (i)-(iii) shown in the table keep the equations stable
and the marching direction toward positive z. In (iv), Murman's shock point operator is
applied. This is consistent with the Rankine-Hugoniot weak eolutions at the shock. For
$oz4, central differences are employed, giving a tridiagonal system.

() In 2] £1,{e,leade <t < traile, the Neumann boundary conditions are satisfied by
the following discretization method:

Above the wing, at j = fup:

do,lj+172 — $o;lj-172 2
+ O ((d
$oss = Uiv172 — ¥i—1/2 (( v) )
""i:t éot é
03)yma

= o specified in B.C.

(Similarly below the wing.)

(i) In £ > 1, i.e,, i > traile, there is a branch cut with constant jump T in ¢y. However,
$o. and ¢ig, are continuous across the cut. Accordingly,
at j = fup, use (do,;_, + T) for ¢o,_, (above cut)
st j = fdn, use (¢o,;,, — ) for o, (below cut).

Once the line § = traile(z = 1) has been solved, the circulation I' is reset to [¢)TE =
Prraile,fup — Beraile,fan and the far field is updated with this new value. The whole process
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is repeated until ¢y and " have converged. In practice, Jameson overrelaxation is used,
together with cyclic acceleration.

A flow chart of the main program that computes ¢g is given in Fig. 60. Descriptions
of the subroutines indicated therein follow. Additional information is given in Figs. 61-64.

Principal Subroutines

SOLVE: This calls SLOR, and manages the sweeps across the flow field including conver-
gence accelerators and is depicted in Fig. 63.

SLOR: This is the successive line overrelaxation module which solves for the solutina
columu vector on I=constant lines (see Fig. 64).
GRID - This sets up the grid data from the user's description (see the file 2D.DOC).
Qutput: imax,jmax — size of grid
z(0:imax+1), y(0:jmax+1) (grid points)
dz(0:imex+1), dy(D;jmax+1) (grid spacings)
fdn,fup (lines above and below wing)
leade traile (position of leading and trailing edges)

There is an option o adapt the grid spacing on the wing to the local slope gradients
of the airfoil. This is implemented by letting dz = —m Here, b is a constant which

controls the extent of the grid stretching; 2.0 is the defa.uit while b < 2.0 will cause greater
variations in the spacing and b > 2.0 will cause less. The user can control this by modifying
the variable “expand™ in the control file. The parameter a is adjusted iteratively until the
grid just fits nicely onto the wing, ie., z(leade) = —1 + 1 - z(leade).

The user gets a summary of the grid and can decide if the computational domain is
big enough. (With adaptive gridding, it is difficult to tell beforehand.)

This IMSL routine fits smoothed cubic splines. ICSSCU is used with a user-specified
smoothing consiant.

ANGLES - Calculates two arrays needed for computing the far field value of ¢ at the

boundary. Vi
e <L 0m b VK

FARFLD - Updates the far field using the current value of I'.
¢ = T.angle + I fld2

OUTPUT - Builds two files of results, one formatted (FORD11.DAT) and one unformatted
(FORD12.DAT) for graphing.

The data output are O, and Mach, the local pressure and Mach number distributions,
where:
Cp, = —26** M2 4,
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2DSMAIN

v

§ca7ees

READ CONTROL FILE
READ OLD DATA (4, IF AVAILABLE

IS A NEW

YES
. CALL GRID

GRID
REQUIRED?

CALL MKFOIL
ANGLES
FARFLD
SETCOF

!

CALL SOLVE

!

CALL OUTPUT

&

(SET UP THE NEUMANN B.C.)
. | '
(CALCULATES 8, COS @ FOR THE FAR FIELD

{PUT IN INITIAL FAR FIELD}
{CALC. COEFFICIENTS FOR THE FINITE DIFFERENCE OPERATORS)

{SOLVE EQUATIONS TO USER'S SATISFACTION)

[REPORT ON RUN AND WRITE GRAPH DATA)

Fig. 60. Flow chart for MAIN program computing ¢g.
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SCY1692

MKFOIL — BUILDS AN ARRAY CONTAINING THE NEUMANY B C VALUES. {-A

REQIL OR A PARARBOLIC ARC ARFDIL. THEF VALUES ARE COMPUTED ANALYTICALLY BY

CASE t FOR AN NACA 0ODnn Al
SUBROUTINE FGIL

GaSE 2 THE AIRFOIL HEIGHTS ARE GIVEN 1h A TASLE

READ 1, , = ¢y,
COMPUTE r = MAKI,} — MIN (g

4 -
CALL ICESCY THI5 IMSL ROUTINE FITS
10R 1C5E0W! SMOCTHED CUBIC SPLINEG
ICESCU IS USED WITH A USER SPECIFED
SMODTHING CONSTANT

COMPUTE THE 5PLINE 5
DERIVATIVES ON THE GRID

L
BUILD THEBC .
ety (10-Al

&

SCI7EA

Fig. 61. Flowchart of subroutine MKFOIL.

ANGLE (.4]

=
[~}

—————— e ——

Fig. 62. Angular relations for far field.
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BC37674

SOLVES THE TRANSONIC EQUATION BY REPEATEDLY
SOLVE CALLING SLOR UNTIL 4 AND I HAVE CONVERGED
l TO THE USERS SATISFACTION

GET {TERATION COUNT
FROM USER

CALL SLOR.

PRINTOUT MADE la¢l AND T

(THIS IS NEEDED FOR THE CYCLIC
IF AT ITERATION n-k ACCELERATION )
OR n-2k THROUGH A CYCLE
SAVE ¢

IF AT ITERATION n, IF AT n | ESTIMATE THE LARGEST EIGENVALUE
ACCELERATE ¢ 1q = 6V 4dn/dT n-kdn
WHERE ¢, = #n-¥n-k

IF NOT l

+ ACCELERATE : 4, = $1, 3+ —= tn = 4.

T 14,
| !

RECOMPUYE [
—4 CALL FARFLD

COUNT ITERATIONS

LOOP IF MORE TO DO
STOP WHEN COUNT OF 0 m
0 1S ENTERED

Fig. 63. Flowchart for subroutine SOLVE.
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8C376€3

SLOR SUCCESSIVE LINE OVER-RELAXATION
J (ONE ITERATION PERFORMED HERE)

[ SAVE “PHI" IN ‘OLD’ ] INEEOED BY JAMESON DPERATORS)

H
FDRﬁE A f .,:2;‘,’”“ 1 FOR EACH ROW REMEMBER y; 4.}
' =1, IMAX) —»|  COMPUTE ;|
T (= K= 17+ 1)
NE
WHEN DO WHEN DONE ‘

m Fun.n FINITE DIFFERENCH
TERMS FOR

K= 17+ Vg K

sasep on si&nEoF

Hi-1,] AND 45

!

BUILD F.D. TERMS FOR
tyy

AT
YES . THE WING
?

INCLUDE NEUMANN B.C.

NO

RECOMPUTE T AT

CALL FARFLD INCLUDE JUMP OF I g2ES THE CUT
?

‘ NO

et

DGE? .{i=

TRAILE? SOLVE TRIDIAGONAL SYSTEM

=% “BY GAUSSIAN ELIMINATION

|

CHECK FOR MAX (8¢ |«

F.D. = FINITE DIFFERENCE

Fig. 64. Flowchart for subroutine SLOR.
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Mach = 1—&/°M™ (K — (7 + 1)¢s)  (This is actually M>.)

Here, n and m are the Krupp scaling factors, as used by Krupp, n = —%; m= %. For no
gealing, n =m = 0.

The graph data also contains the critical pressure,

K
v _ogs K _pm
Cp = —26/* 2,

above which the flow is supersonic.

Since Cp is only known off the wing, the graphing program extrapolates linearly to
find Cply=o+:

3 1
Coly=at+ = Ecp|i=lfzdy - §Cp|5=sm.,-

Other subroutines are shown in Figs, 63 and 64.

3.2.2 The Three-Dimensional and Wall Interference Correction ¢,

3.2.2.1 Analytic Formulation

Input Parameters

The relevant program modules .reat similar and nonsimilar airfoil section wings and
obtain interference corrections for these shapes. A similar planform wing is defined as
one having the same airfoil section along its span but with its chord varying with span.
The numerical methods employed here are e generalization of those used in Ref. 43 for
unconfined similar section wings. Remarks on various geometrical aspects are:

(i) The wing is normalized by b so that it lies in |z] < 1. The half-chord ¢(2) is input.
For an elliptic wing, shown in Fig. 65, c(z) = V1 — 22,

(ii) As previously indicated, the small parameter for the expansion is 1/B, where if
AR = aspect ratio,

B=68/7.}
=62 AR. %/ , where / = area of planform
1 wl w
=§34AR < / e(z)dz
2 -1 .

(iii) The wing may be in a circalar wind tunnel as indicated in Fig. 66. The parameter
p= % is input as the reciprocal of the fraction of the tunnel spanned by the wing.
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CHORD [

Fig. 65. Elliptic planform.

Boundary Value Problem for ¢,

This is:
L] = (K —(v+ 1)do,) 1, — (v + D)o, é1. + ¢y, =0 (3 - 58a)
$1,(x,0)=0; ¢y — — (=) + w(z)) — Pl(z} - asr-—co (3 — 58h)
[#1)yape =Tal2) = [#1)rg » TE~ TRAILING EDGE . (3 - 58¢c)

Here, d{z) and w{#) are crucial functions controlling the size of the aspect ratio and wind
tunnel corrections, respectively. They are given by the integrals

d(z) = o ][ r“(f) dt (3 - 59)
(f = principal value integral)
w(s) = (251""(?2)2 & (3 — 59b)

The quantity w(z) in (3—59b) has been obtained from the far field analysis of Sections 3.1.1
and 3.1.2, and the (+) and (—) apply to free jet and closed wall test sections, respectively.
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S037848
WING IN OPEN JET TUNNEL

e T A A A

L e AT AR ARSI

Fig. 66. Front view of wing confined in circular wind tunnel.
Now, taking advantage of the assumption of similar sections™®, let

N AP T A —
do = e{z)o(X,Y); X = ok Y = ek F, o(z,2) — Az = ¢(2)Gue(X)

which gives the reduced problem for ¢g
(K — (v + 1%y ) Yoxx +P0yy =0 ; Yoy ly=0 = Gx(X)} ; ["pﬂx]TE =0. (3-60)
The problem (3 — 60) has no m!:plicit dependence on z. From v = ¢0o(0), its solution is

obtained as
¢o(z) = e(z)do(0) ; To(z) = ¢(z)To(0)
Use of a similar scaling for ¢, for which ¢; = (d + w)e(2)¢1 (X, Y), gives

(K b (T + 1)‘6“1)11’1.\'1 - (7 + 1)%;1'361; +t1yy = 0 (3 - Glﬂ}
Yo =0in [X|<1 ; [Brelym =0 ; h1o—¥ 3104+ . (3-610)

* Nonsimilar sections will be treated in Section 3.7.
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A modified form of (3 — 88) is useful to regularize the far field. For this purpose, part of
the known far field is subtracted off and ¢* = ¥, +Y is solved for. The resulting boundary
value problem for ¢* is

(K = (1 + 1)gox(0)) bxx — (7 + Ddox s bk + 659 = (3 - 62a)
$ylyo=1 in |X|<1 (3 — 62b)
§ -t s voeo (3 — 62c)
[6") ke =T = [#') . - (3—62d)
The actual solution ¢, is then obtained from
$1(2) = (d(=) + w(2)}(c(z)$" +¥) (3 —63a)
Ti(z) = (d(z) + wl(2)) c{2)T" (3 - 635)

where now

_ _ D0 1 l6)
1 W(Z) - 4 4 (ze _ pg)z df

Within the problem given by (3 — 62), the position of the shock is known, having been
captured by the ¢ solution. It is therefore natural to fit its perturbation into the ¢,
problem by using the shock jump relations to pravide a set of internal boundary conditions
as in Section 2. These are:

L] - 61611 + 28 (7] = —a{ﬂ (3 - 64a)
where
B= K — {7+ 1)0, (3 —64b)
B = [¢o,;] / [40.] (3 —64c)
and
A = [$o,.] — [8%0..] — 28 [#o.;) (3 — 64d)

are known from the ¢¢ solution.

3222 N i ormulation

In the soluticn for ¢*, all of the other scalings are applied only at the output stage.
The various elements are calculated as follows:

(i) d(2)

-13“f 12—
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The simplest case is for an elliptical planform, e(z) = v/1 — 22. Then,
d(z}=T.(0)/4 . (2~ 66)
Otherwiee, the trigonometric substitution
2= -—cosf (3 -67)

is used and th= planform shape is represented by the sine series
oz) = Z Ay sinnd
n=1

The integral {3 — 66) then becomes

d(z) = 1"04('0) 1 7 i nA,sinnd . (3 — 68)
. r=1

In practice, ¢(z) is given at a series of span stations. The transformation (3 — 67) is used
and a cubie spline is fitted to c(2). It is evaluated at § = 2xr2Z, where m =0, ---n (say),
and the A, are then computed with a discrete Fourier ¢ransform.

‘This works well for smooth, near—elliptical planforms, but for others (e.g., sha.rp cor-
nered wings such as rectangular and delta planforms), d(z) may have singularities which
nead further treatment.

(i) w(z)
To(£) _
wi) = f T og (3—69)
Here, u > 1. Therefore, the integrand is finite everywhere, and a straightforward quadra-
ture using the trapezoidal rule seems perfectly adequate.

(iii) Solution for ¢* (Shock—Free Case)

In the solution of (3—62), the grid and ¢y are input from previous run which used
an identical computational grid. The coefficients (K —(v+1)¢u, ), (1+1)4u,, are computed
using central differences in elliptic regions, and backward differences in hyperbolic zones.
The parabolic value zero is used for K — (¥ + 1)¢o, 8¢ a subsonic to supersonic transition.
This keeps the system stable. The subsonic and supersonic regions are already known from
the ¢g. Apart from this, the solution proceeds in the same way as for ¢q.

The initial guess for ¢* can be ¢* = {, an old solution, or an anslytic solution to the
Prandtl-Glauert equation. Since ¢q_ and ¢o,, — 0 as r — o0,

Ko + b3 =
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will be a reasonable approximation, at least in the subsonic case, with the boundary
conditions (3 — 62b)(3 — 62d). This “Aat plate” problem can be solved analytically with
the following rescaling

= VEG b brr =0, drlvo= = i =)= =¥ VEY)

vK
to give
¥(z,§) ==Re[—iz ++/1— 22 + 2tan™" 1/% +«}
L 1- {8 —70)
(z =z+ w'f?g)

To evaluate {3 — 70), the fcllowing branch cuts may be used:
D<hy <2z , arg(Z24+1)=6- (3 —7la)
arg(Z -1)=6, (3 — 71b)

where 8, and 8_ are shown ic Fig. 67. This solution has I'* == —%, which is not too far
from the value obtained from s numerical solution of (3 — 62).

BCITE30

ARGUMENTS FCR
“FLAT PLATE" SOLUTION z

-1 D 1

Fig. 67. Arguments used in Eq. (3 — 70).

(iv) Treatment of Shoek Conditions
From Refs. 29 and 32, the shock equations are:

[#o] =0 (3-72a)

Zeroth °“‘e‘{ [Kd0. = 2248.1 [dou] + [d;]" =0 (3-720)

First order{ [E‘?S;] - £ [‘ﬂ] +28 [¢;] = 5’1{162 [‘f’ﬂx-] - [L‘.‘#n--] - 28 [%.;]} (3-788)
[6*] = —91[#0.] (3-73b)
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where p = K — (v + 1)¢o,, B = {%‘4}, and z = ¢, () is the correction to the shock locus.

Eliminating g; and using the zeroth order equations yields
(2] — £°[83] +28(¢5] = [[: ]] (3-174)

where A = 3* [¢;,] - g(ﬁu.,] -2 [¢o,,] . This is the governing equation for the ¢* shocks.

The shock is fitted over three mesh spacings — empirically, the numerical width of the
captured shocks. Xf p;_3 ; < 0 and p;—;,; > G, then the two sides of the shock notch are at
(i,7) and (i — 8, 7), respectively, downstream and upstream as shown in Fig. 68. The case
when not all shock points lie between the same two grid points will be considered later.

The coefficients us, pr—3, 8, and A are all evaluated by taking differences of the
quantities evaluated at T and I — 3.

The solution proceeds normally up to and including : = I — 3. At that line, all the
points on the notch will be either hyperbolic or parabolic. Accordingly, the difference
equations will be numerically explicit,

Lines I — 2 and I — 1 are solved normally above the notch; values for (I — 2, jsmax)
and (I — 1, jsmaz) are extrapolated linearly from either side, under the assumption that
the jump falls entirely between J — 2 and I — 1. This is indicated schematically in Fig. 69.
The shock strength is assumed to vanish at jemaz.

At line I, (3—74) is used to provide equations for points fup to jsmaz; § = jsmaz+1
to jmaz are treated normally as interior points in the usual manner. In (3 —74) the jumps

are computed from
[(] = -(Yr=s . (3 — 75)

In the treatment of the jumps of the derivatives,
¢3; uses a two point forward difference, "—"t('-&l';');ﬁi
¢" _, uses a three point backward difference,

e.q., ,—(Eh (3¢7-3s —4¢—a + ¢s-5) (for a uniform grid).
¢§ uses a three point centered difference, ﬂ;—'y(ﬁ, i+1 = #1,j—1) (for a uniform grid)

At j = fup, the known Neumann boundary condition on the 1 /2 node of tangent flow
on the wing is used with the following average of point values, recognizing that the body
is at & 1/2 node point.

1
5 (¢§j+1/z + ¢;l5=0) (3—178)

Because 45 = 1 everywhere on the wing, it cancels out in [¢5]. Thus

[é;]_}_]np ' (3 - 77)
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Fig. 68. Orientation of shock notch.

scITRIL
EXTRAPOLATION OF ¢* FOR JUMPS

L < I EXTRAPOLATED VALUES
I
l J
Le——

-4 3 -2 i1 ] 141

Fig. 69, Linear exirapolation at shock.

This approach gives a full tridiagonal system of equations for line I. Once solved, the
solution proceeds normally at line I+ 1.

The shocks captured in the ¢g solution are not always vertical. It is unlikely that the
sonic line will stay between the same two I values for the entire shock. There seem to be
three options when this occurs:

(i) Use a wide notch 8o as to cover the whole shock (see Fig. 70a). For strongly inclined
shocks (not typical of the transonic case or coarse grids), some of the information on
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the computational grid will be lost. Also, differences (i.e., [45‘]) would include more
than just the shock. This has the advantage of logical simplicity and is incorporated
in the slender body code.

(ii) Use a one point notch which follows the shock (see Fig. 70b). Here we would use
direction—sensitive differences for ¢} and stencils that look like ( #orYy ). To get the

correct coefficients, however, ([¢n=] et.c.) they would need to be still calculated across

three mesh spacings. This could be somewhat inconsistent for some points (such as
Column I) which would be using coefficients from the middle of the numerical shock.

(iii) Use a three point notch which follows the shock (see Fig. 70¢). This avoids some of

the problems of (ii), but has some of its own, e.g., how to calculate $§ at points like

and @ . Central differences (8s currently used) would require ¢* values from

inside the notch. These could be obtained by linear extrapolation in z, as explained
earlier, but this introduces errors of at least O(k), and possible inconsistencies.

This is the method currently implemented. Perhaps a better way to calculate ¢;
would be direction—sensitive one-point difference as in (ii). Here, one point forward on
the right (downstream) side and one point backward on the left for backwardly inclined
shocks and the reverse for forward inclinations.

(v) Output
The total lift L iz given by
2/3
L=;:»U:‘;".J 6 , where b = semispan (3—178)
and I'(2) = total circulation
1
=To(2) + E(d(z) +w(z))™*(z) . (3—79)
Then,
CL= ﬁ (Sw area of wing = 2b f c(z)dz)
52/3
( f I‘(z)dz) (3— 80)
c{z)dz
/3 1+ 5(d+o)'|d
=9 ru(o)f" <) i B+ T4z | e similar scctions case(3 — 81)
Mg, S e(z)dz

where d = -dT.L:)- =1 fo r an elliptic planform. For the free field case,

C —ﬂr () 1+ B—.slf*-AR-lj (2)d
L_Mgo D 4B 1 = 2 —ICZ Z

— 82
1/a Ll - (3-82)
=§/ . AR: n for an elliptic planform.
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wyIRa?
WIDE NOTCH

Fig. 70a. Wide shock notch.

[ 1L}
ONE POINT NOTCH

Fig. 70b. One point shock natch.

ACI7844

THREE POINT NOTCH

Fig. T0c. Three point shock notch.
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L3

Other quantities, such as the corrected pressure on the wing at a particular span station,
can be similarly calculated using

¢=¢o+ %4’1 (3 —83a)

Cp, = =264, . (3 —83b)

3.2.2.3 Program Operation and Flow Chart

Many of the modules in PHI1 have the same function and implementation as in 2D.(In
fact, SOLVE, ANGLES, and FARFLD are used directly by both programs.) Accordingly,
only the substantial changes are discussed here.

Principal Subroutines

PHI1
Punctions:

Read control file.
Read zeroth order results.
Read ¢*,T* if available.
Initialize ¢* (method controlled by user).
() to 0,¢* =" =0,
(i) to the solution of K¢3, + ¢}, = 0, by calling PHILAPL.
(iii) to an old solution.
Call WINGSC to compute the span scaling function d(z).
If 2 # 0, call TUNLSC to compute w(z).
Call SETUP to compute partial differential coefficients, and the shock relations.
Call SOLVE to solve the ¢; boundary value problem.
Call OUTPUT to write graphics and informative results.
Write ¢* and I to QUT_FILE, if requested.

Stop.

WINGSC — Computes d(z); see Section 3.2.2.2 (i).

The wing profile is read from WING_FILE, which should consist of (2, ¢(z)) pairs, one
per line. This is extended, first to form a symmetrical wing, and then a periodic function,
as shown in Fig. 71.

z is mapped into 8 via z = —cos#; 0 < 8 < 27. A periodic cubic spline is fitted in 8.
The ides is that wings may often look like +/1 — 22 near the tips; the transformation will
remove the singularity in ¢/(z) which will help to provide a more accurate spline fit in this
neighborhood.
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The spline is evaluated at m equally spaced paints in (0,27) where m = 2n, n =
number of input end extended points. (Too many would start to fit wiggles in the splines;
too few will not give enough Fourier coefficients.)

These values are used to compute a diserete Fourier transform of ¢(#).
The downwash integral 3 _[_1 e df (Eq. (3 — 65)) is then evaluated.
I, )e()ds

f__‘ c(r)dz
quadrature.

“weffect” is the relative lift contribution due to aspect ratio (see Section 3.2.2.2 (v}).

These values of d(z) are then used to compute weffect = by trapezoidal

TUNLSC — Computes w(z); see Section 3.2.2.2 (ii).

The wind tunnel ratio p is an argument (variable um); the integral is calculated by
the trapezoidal rule on a 51-point grid on [~1,1].

1 w(s)e(s)dr
The integral teffect = —]"'ET 8 calculated similarly to weffect. It is the relative

lift contribution due to wall interference (see Section 3.2.2.2 (v)).

SETUP — Calculates verious coefficients used in the ¢; boundary value problem and shock
relations (see Fig. 72).

Principal Variables
CX(1: IMAX,1 : 3) Computational molecule for first z derivative (centered).

=ha }I.g - hl. hy
CX(I,1:3)= v : '
S o ey v oy R (W
CXX(1:IMAX,1 : 8} Molecule for second z derivative (centered).
CXX(I,1:8)= —ms 2 2

hi(ha+hz) * hihz 7 hg(hy+hs)

PX(1: JMAX,1: IMAX) Values of K — (v +1)gs,, calculated with

— central differences in elliptic regions

— backward differences in hyperbolic regions

— parabolic (i.e.,, PX =0) at the elliptic to hyperbolic transition

No shock operatar is used at the hyperbolic to elliptic transition; since it is handled
by the fitted shock).

PXX(1:IMAX,1: JMAX) Velues of {7+ 1)éo,,, using central/backward differences.
SHK(1: JMAX) Relates to the fitted shock.
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SHEK(J) = I Denotes the position of the downwind side of the shock notch at line J as
indicated in Fig. 78 and = 0 if there is no shock at that line.

JSMIN,JSMAX denote the j-limits of the shock. If the shuck is only above the
wing say, JSMIN = FUP. I there is no shock at all, JSMAX < JSMIN.
The second part of SETUP evaluates various jumps and coefficients across the shock.

and prepares them for the tremtment of the numerical shock jump equation. Suppose
SHK(J)=1I. Then:

a= [¢o'] = ¢¢I - ¢:1‘_3 (CBIlt.l'&l diﬁerences)
b= [do;]/[boc]) + B-
— fll_flf—!
For this quantity, ¢y is calculated using central differences away from the wing. On
it, the known boundary condition, i.e., $5, = 3 [ﬂff‘- g dsw} with $,, given is employed.

¢ = B*[¢o,.] — [#éo..] — 28[¢e.,]} < O, where p = K —(7+1)¢o, = PX.

From these quantities, eight coefficients are stored in a common block for SLOR to
access later. These are:

CIMP(J,1:38)=28-CY(J,1:3) The molecule for 25¢,,

CIMP(J,4) =4/ [¢n,] =£

CIMP(],b)= ?E%I—Tr

CJMP(],6: 8) The computational molecule for pr_sd1,,_p + -[ﬁ]-th,_,

The differencing used here for ¢;_ is backwards and has error O(h?), not O(h).
I-5 I—4 I-3
hg h1
The coefficients of ¢1_g 4,3 are:

hy —(hy1 + ko) 2hg + ha
ha(hs + hz) ’ hikg * hi(h + ha)

With these eight coefficients, the shock relation

] — 2[4 ) =-at
2] - B°[42] +28145] = ~Ap s

is represented as

CIMPi¢r, 11+ CIMPyyy—5¢1,0+CIMPadrg41 = CIMPors - d(1-543),;
— CIMPsdr41,;+CIMPy 33 b1-3u
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SCI7648

0 — INPUT DATA FOR - 120
O — EXTENDED DATA

Fig. 71. Periodic extension of planform.

Fig. 72. Computational
molecule sed in SETUP.

HYPERBROLIC

|

J+1

ELLIPTIC
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where U can equal J —1, J,or J + 1.

As before, ¢; at J = FDN or FUP is computed using the Neumann boundary
condition ¢}|g=0 = 1 (see Section 3.2.2.2 (iv)).

PHILAPL (z,§,vK) calculates the analytic solution to the Prandt]l Glauert “fat plate”
problem (PG1) K¢oz + ¢35 =9: 95 =1at §=0,0<z <1 ¢ — —I2 as r — o0 &t the
point (z,§), with 8 = tan~! VK§/z and r? = 2% + Kii*.

If Z = z +1Y, with ¥ = +/K, then the solution is obtained from the incompressible
map (IPG1) of PGl: ¢; + ¢dyy = 0 with ¢ — ;—Etnn"l % as 2 + Y2 — co and
dy(z,0) = 711-‘, 0< 2z <1 Thisis::

f
4= Re F(Z)= —<Re {-iz FVI-Z 4 2tan 422 L w} . (see 3.2.2.2 (i)

" VK 1-2
= L Re{—iZ+ 12 + 2tan™ 1-2
VK 1+2

(3-8
Equation (3 — 84) is obtained from integration (Ref. 44 195.04) of the complex velocity

for IPG1, F'(Z). Thus,
. . Z-1
F'(Z)-u——w—t(ﬂz_kl—l) . 3 -85)

u=¢:(z,Y) , v=éy(z,Y)

The real and imaginary parts of (3 — 85) give

= —Esin (8” _e_) (8 — 86a)
u=_\/§m(’+;""),  (3-86Y)

P =arg{ZF1) , O<arg(--") <27 (3 —87a)
re =mod(ZF1) . (3 —870)

b

where

Equation (3 ~ 84) indicates that I' = —27 for the Neumann boundary conditions assumed.
Equation (3 — 86a) exhibits the square root infinity in the perturbation pressure u near
the leading edge (r— = 0), and the fulfiliment of the Kutta condition {u] = 0 at the trailing
edge ry = 0. These features as well as the satisfaction of the boundary conditionon Y =0,
0 < z €1, can be ascertained from (3 — 87a).
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In the notation of the subroutine,
Y
= pen—1
argl « a.rg(z +1) = tan (_z n 1)
(Y
arg2 « arg(l — Z) = tan i

-1

1 142
THETAHg(argl-argzj (—a.rg 1%

Quantities used to compute Re tan~" /14Z where tan™! Z = 3; In 3342 = Re(tan™!) =

joe (124F) e
] (i),

beri ﬁﬁ = —asin(THETA) + idcos(THET A),
1+5b

1-¥

atan « %arg(b"),

b* —=

c+= Il -2t |1
THETAI « -;-(n.rg 1+arg2) (So thet V1= 22 = ee" THETAL
These results give,

\/_ {v + c-cos(THETAI) +2-atan 47}

Figure 74 outlines the post processing operations and Fig. 75 indicates the subroutine
SLOR.

3.2.3 Convergence Acceleration

Slow convergence can occur for lifting cases. This iz marked by the error
ex = maxX ¢ — dp-1]
becoming small although the solution is far from its limit value.

One possible acceleration technique developed in Ref. 45 uses estimates of the largest
eigenvalue(s) of the error matrix to guess the limit. If these eigenvalues are A; > Az > -+,
then

b= gy + DEHLOE ¢k+1 = ¢k
1
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OUTPUT — WRITES 2 FILES OF RESULTS FORO14.DAT WHICH REPORTS
ON THE RUN AND FORO1E.DAT WHICH IS UNFORMATTED
AND CONTAINS GQRAPHICS DATA

COMPUTE SCALING FACTORS | FOR KRUPP BCALING. n =3 m=2
SCALCP = -247 M™=9 4 3
SCALM = ¢% mm FOR “NORMAL*” SCALUNG, m=n=0.

: SECOND ORDER EXTRAPOLATION 1S
EXTRAPOLATE 4 AND 4 ON TO | POSSIBLE USING SOLUTION VALUES OF
y = 0. LINEARLY dyly = © BUT IS NONUNIFORMLY VALID AT
T LEADING AND TRAILING EDGES.

COMPUTE Cp,, AND Cp,

{= SCALCP @yl
ATy=0

v

LINEARLY INTERPOLATE . | ANOTHER POSSIBILITY IS TO PUT THE
FOR Cp, AT THE NOTCH JUMP ALL IN ONE PLACE AS IN 2(v)

!

FOR | = jsmin TO jsmax
GET ﬂ1|jl = - ‘*'"l*gl]

!

COMPUTE LIFT COEFFICIENTS: | €1,.6%/r
T e AN ABJUSTED FOR | ot q (3 ,(™EFFECT * "-EFFECT)I_.}

R D wing TUNNEL EFpecTs | b1 o (1Y 3

COMPUTE OTH ORDER AND | MACHO = - ¢2/2 (K - tr+ 11dg )
CORRECTION MACH AMACH1 = 62"3 ty+1)4°
NUMBERS x

WRITE DATA TO FILES

Fig. 74. Flowchart of postprocessing elements, (repeated as Fig. 89 )
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SLO — PERFORMS ONE LINE OVERRELAXATION ITERATION ON THE FIRST ORDER coRrecTiON S 1470
T0 THE TRANSONIC SMALL DISTURBANCE EQUATION,

K=ty + Vg W oy lr + Tl $ " x + 4 gy =0

SAVE CURRENT SOLUTION
OLD — PHI
FOR EACH COLUMN; - FOR EACH RDOW: COMPARE THIS POINT
fi=1, | MAX) G=1. ] MAX) —* TC SHDCK NOTCH
AWAY FROM NOTCH i
; INSIDE NOTCM
SET UP REGULAR JAMESON SET UP DUMMY EQUATION BET UP SHOCK JUMP
QUATION (ELL/IPARB/HYP! TO (LINEAR EXTRAPOLATION EQUATION. [¢*y] TERMS
Px-4° oy PAK4C, +45, =0 FROM NEAREST $IDE) DEPEND OM IF ON THE WING

"

WHEN ALL ROWS DONE

ARE WE ON THE WiNG, | YES
AR O T L | e] ADJUST EQUATIONS FOR B.C.

k =
NOTCH? ’ 14 1
1 T
NO < it
ARE WE DDWNSTREAM | YES

THE NOTCH? l¢°iwake = I'*

m:t J

SOLVE THE TRIDIAGONAL
SYSTEM

4

AT TRAILING EDGE? YES RECOMPUTE [ = [§)7
(OR. IF NOTCH OVERLAPS, CALL €
EDGE + 117) FARFLD
1

B |
r - e
CONTINUE SOLUTION

OF COLUMNS

oM THE WING AND  |—#{ ADJUST EQUATIONS FOR cut
e

Fig. 75. Flowchart of subroutine SLOR.
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is the formal limit, where §; is at most of order A%.
_ There are several ways of estimating A. Three of these are given below as Ay, A1, and
A1, where '

M= -‘%’%ﬂ: (where ¢* is ¢ evaluated at some fixed reference point)
E P ' .
X=3 ks —¢el/ Y |65 — bu

"X = 876k41/85 6, where & = b — diy

In our experiments, 31 seemed to be best: A; is sensitive to roundoff and the choice of ¢*,
wlile A; seemed tn be frequently greater than 1.

Implementation: We use cyclic acceleration with cycle length k (typically 12-16)
besed on iterates m apart (typically 2 or 4). k iterations are performed normally, then an
acceleration performed via:

N =t mbim & 6= bk = bhem
¢k — ?sk—m
=1

$r — dp-m +

Then the cycle is repeated.
..Ac'lvantages of Method

— Asindicated in the Results section, the acceleration method in the long run helps
convergence greatly. .

— By giving the solution a “kick” every k iterations, it stops it from being trapped
in a local near-solution well.

Disadvantages of Method

— As the mesh spacing — 0, A; — 1. In practice, ;1 > 1 can occur. In this case,
we set A; = 985 (say) which upset the solution in some cases.

— The accelerated ¢ does not satisfy the difference equations. The process msay
move ¢ and I' a5 a whole closer to their limits, but then most of the next cycle is
wasted getting back to 2 near—solution of the difference equations. This can be
inefficient and frustrating,

Improvements of the process seem feasible, using a higher order method, i.e., estimat-
ing Az, As, etc., which could conceivably eliminate both the above disadvantages.

However, since the underlying equation for ¢o is nonlinear, there are some limitations
of the method. Convergence could require moving the shock, straining the applicability of
the linear method.

136



AEDC-TR-81-24

3.3 Results for iti ne 8

Figure 76 indicates the power of the convergence acceleration method for calculation
of a supercritical My, = .75, @ = 2° flow over a NACA 0012 airfoil on a relatively fine grid.
Without acceleration, the circulation has not converged at 500 iterations. By contrast, the
acceleration method provides impulsive corrections to achieve almost the asymptotic value
of the circulation within the same number of sweeps. The relaxation parameter w was set
equal to 1.7 for these calculations.

Computational studies of the wall interference effect were made on similar section
wings. Figure 77 indicates chordwise pressure distributions associated with the dominant
two—dimensional term ¢y at My = .63 and o == 2° (sclid eurve) for a NACA 0012 airfoil
wing. ‘This variation has the characteristic leading edge singularity. At higher Mach num-
bers, clustering the grid near the leading edge was important in achieving convergence.
The relative corrections associated with finite aspect ratio and wall interference (¢:) are
also shown for the same set of flight conditions for an aspect ratio (AR) = 8 elliptic plan-
form. The dotted curves indicate the free field finite aspect ratio chordwise distributions
on upper and lower surfaces and the dashed lines denote the additional wall interference
effect for a circular open jet test section using the far field correction worked out in Sec-
tion 3.1, given as Eq. (3 —59b) herein. In the figure, C3 denotes the critical pressure level.
A mean value C,,,,,, is shown for Cp in which

_ «El c(z)Cpdz
Crana = f_l_l o(z)dz

The parameter u is the reciprocal of the semispan in units of the tunnel radius.
Accordingly, the case indicated in Fig. 77 corresponds to a semispan of 95% of the tunnel
test section radius. In agreement with the assumptions of the asymptotic method, the
wall interference correction for this case is numerieally of the same order as the free ficld
three-dimensional correction associnted with finite aspect ratio and the induced angle of
attack correction of the trailing vortex system. The correction appears to peak near the
leading edge and is greater on the upper surface of the wing than the lower at this positive
incidence.

The aseaciated isoMachs for this case are shown in Figs, 78-80. Figure 78 indicates
these lines for the zeroth order two-dimensional solution. Figure 79 shows those corre-
sponding to the incremental effect of aspect ratio and wall interference associated with ;.
The resultant field is shown in Fig. 80. In Fig. 70, it 1s interesting to note the persistence
of the leading edge singularity of the ¢ field in the isoMach patiern.

For the elliptic planform of Fig. 77 at M, = .63, and a = 2°, Fig. 81 shows the
variation of the chordwise pressure distribution along the span due to the combined effects
of wind tunnel wall interference and finite aspect ratic. Analyticel evaluation of (3 — 59b)
specialized to the case of the elliptic planform fully spanning the tunnel {u = 1) indicates
that there is a square root infinity in the span load distribution at the blocked wing tips
at their intersection with the open jet or solid wind tunnel walls. This trend persists for
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Fig. 76. Effect of convergence acceleration on attainment of asymptotic value of circu-
lation T,
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Fig. 77. Mean wing chordwise pressures, circular open jet test section wind tunmel,
My = .63, & = 2°, NACA 0012 airfoil, 100 x 60 grid, elliptic planform.
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Fig. 79. Perturbation (¢;) isoMachs for wing of Fig. 77.
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the p = 1.05 case, since the wing almost spans the tunnel. Accordingly, the chordwise
pressures are almost identical at stations over most of the span, but change drastically at
the tips aa shown in Fig. 81. Studies of this type for the supercritical case could guide the
twist of the wing to achieve effective free ficld conditions in the tunnel.

Associated with these pressures are the spanwise load distributions shown in Fig,. 82,
The ordinate is the sectional lift coefficient along the span normalized to the two-
dimensional valie for Mo, = .63 and a = 2. Also shown is CL/Cy,, the total wing
lift coefficient corresponding to the separate and combined effects of finite aspect ratio and
wall interference normalized to the two-dimensional value. Here, the forementioned cxag-
gerated tip effect is evident and is connecied to the wall interference. For this 95% spanning
of the test section, both effects combine to give a reduction of the two-dimensional lift
by 42%. )

The effect of planform shepe on these sectional lift distributions is shown iu Fig. 83,
where the chord variation aid
e(z) = (1 - 2%) /

is considered at the same conditions as the elliptic one of Fig. 77. In contrast to the
constant downwash effect of the trailing vortex system for the elliptic planform, the free
field finite aspect ratio correction now also shows & variable twist effect along the span.
For the elliptic wing, this was associated only with the wall interference. It is interesting to
note that in spite of this, the magnitude of the total lift reduction due to combined finite
aspect ratio and wall interference is still approximately the same as that for the elliptic
planform.

Supereritical shock capturing will be described in what follows. Of interest in con-
nection with the shock fitting required for the $; solution is the “crispness” of the shocks
captured by the ¢¢ solution. Figures 84 and 85 show pressure distributions along various
lines j == 1,2,3,+:+,iMAX for coarse and fine grids, respectively. Figure 85 indicates that
our algorithm captures the shock over 2 to 3 mesh points. In Fig, 86, the relationship of
the jumps to the Rankine Hugoniot shock polar is shown. If u; and v) represent preshock
reference states, the abscissa and ordinate used for the figure are respectively

(7 +1){u —w)

TS e -k
5o @ty —v) { 3 }m
4 (v+Luy — K !

where 4 = ¢q,, v = ¢, and K is the transonic similarity parameter defined previously.
The various curves progressing from the ¥ axis upwards each represent the variation of ¥
with T along § = constant lines, starting with & §j level closest to the sirfoil and moving
upwards in unit increments of §. The sharp break in the curves near the non—diffused part
of the shock occurs at its downstream side. The proximity of the kink location to the polar
is & validation of our algorithm to capture the proper Rankine Hugoniot jumps.

As indication of the effectiveness of the grid clustering employed, Fig. 87 shows 1so-
Machs for the more supercritical NACA 0012 flow corresponding to My = .8 and o =2°.
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WING IN TUNNEL

Fig. 81, Variation of the chordwise pressure distribution along the span for wing of
Fig. 77, Moo = .68, & = 2°, p = 1.05.
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Fig. 82. Spanwise loading for wing of Fig. 77.
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Fig. 84. Pressure distributions over NACA 0012 airfoil, M, = .75, a = 2°, 50 x 50 grid,
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Fig. 86. Variation of perturbation downwash with pressure in relation to shock hodo-
graph, Mo, = .75, a = 2°, NACA 0012 airfoil.
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Formation of the recompression shock on the rear of the airfoil is evident in these patterns.
The horizontal and vertical grid clustering employed are shown near the frame of this plot.

3.4 Supercritical Interference Flows

In Fig, 88, a result is shown for & supercritical interference flow. This calculation
represents the chordwise pressures over an aspect ratio 8 elliptic planform which spans
90% of a circular wind tunnel. The wing is at 2° angle of attack, at a tunnel Mach number
of 0.7, and has similar NACA 0012 airfoil sections along its span. The effect of the open
jet and aspect ratio is to weaken the shock as anticipated.

In the treatment of these supercritical flows, the numerical methods were refined so
that the shock fitting methods can adequately handle stronger supercritical cases associated
with Fig. 88. Two issues dealt with in this connection are the ¢* shock fitting procedures
and the treatment of the surface boundary conditions.

In connection with the shock issue, it is useful to note that in practically interesting
cases, the shock is almost vertical and the region about it can be contained with a vertically
oriented boundary ABCD as shown in Fig. 68. The zone inside the “shock notch” ABCD
is a “hole” for which it is not necessary to compute the interference potential ¢*. On the
other hand, a staggered boundary of & mesh width of three points shown in Fig. 70¢ can
also be used to satisfy the appropriate jump conditions across the shock. The configuration
of Fig. 68 is advantageous from the standpoint of programming logic, particularly in the
treatment of jumps in ¢3([¢}]) so that differentiation inside the notch is avoided. The
disadvantage is that the shoc{( region may be unnecessarily widened. However, for nearly
vertical shocks associated with Mach numbers close to unity and fine grids, this disadvan-
tage can be offset. The three point staggered notch has the advantage of following the
shock contours.

Subroutines SETUP and SLOR have been optimized so that numerical treatment of
the staggered and upright notch can be built into these modules. SETUP is a subroutine
that calculates the coefficients needed in the variational (1** order) equation from the
zeroth order basic flow solution. It is used in subroutine SLOR and also detects the shock
as well as finding the coefficienta for the 1** order jumps. SLOR is depicted in Fig. 75.

Other capabilities that are included in the code are adjustmeat of notch width and
batch capability. In regard to the former, the adjustment can be made asymmetrically in
the streamwise direction to model the shock layer adequately.

In regard to the boundary conditions, boundary points are handled by averaging the
slope information on the boundary with that at the immediately adjacent vertical node
point. The resulting discretization is given as Eq. (3 — 76} which is used to numerically
evaluate the £y terms in the equations of motion. Referring to Fig. 59, additional accuracy
and consistency with the locally second order accurate discretization for interior points can
be achieved based on & Taylor series method. These use the first three vertical nodes points
shown in the aforementioned figure. In the upper half plane, noting these by indices 1, 2,
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Fig. 87. IsoMachs for NACA 0012 airfoil, M = .8, a = 2°, grid adapted to leading
edge bluntness.
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Fig. 88. Chordwise presgures on elliptic planform wing inside open jet wind tunnel,
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and 3 corresponding to fup, fup+ i, and fup+ 2 and letting

h=wp—n
ha=1ys -t

it is possible to obtain a locally second order accurate expression for ¢y at y2 in terms of
$y Bt y = 0, which is not a node point. The Taylor series gives simultaneous equations
with information which allows ¢ at y = 0 to be eliminated so that the following expreasion
can he obtained:

2h? —2h k] — K}
hihz(hy + h2)(2ha + ha2)

where P, |g-o is specified in the boundary conditions.

With the PHI1 code modules charted in Figs. 75 and 89 and other figures, an
M, = 0.75, a = 2° case was computed for an elliptic planform, aspect ratio 8 wing.
The wing was assumed confined by a circular cross section free jet wind tunnel, with the
wing spanning 956% of the tunnel diameter.

To nccelerate the convergence of the iterative scheme, the special method described in
Section 3.2.3 involving the eigenvalues of the error matrices was used. This is particularly
important for transonic lifting cases involving supersonic bubbles whose dimensions are &
substantial fraction of the mirfoil chord such as this one considered here. In Fig. 80, the
convergence history of the tunnel wall perturbation of the circulation is shown, Rapid
convergence is achieved after only 200 iterations for this grid which hed 50 points on the
airfoil and 80 vertical nodes. An important factor controlling this behavior was the proper
treatment of the shock notch. Referring to Eqs. (3 — 73), particularsly, the factors {go,,},
[¢o., ) [#6,), end [do,], it is imperative in this stronger supercritical case that no differen-
tiation is performed inside the rapidly varying and possibly numerically dispersive shock
layer which computationally models its physically discontinuous counterpart. In addition,
the width of the notch should be adjusted so that the full Rankine Hugoniot transition
is achieved. This is based on the weak solutions associated with the divergence form of
the small disturbance equation, As discussed in Section 2.20, the streamwise pressure
variations at various heights above the airfoil depicted in Fig. 85 and the isoMachs shown
in Figs. 91 and 92 have been considered in establishing the upstream and downstream
boundaries for the shock notch.

The basic wind tunnel wall effect of this NACA 0012 similar wing gives rige to corrected
isoMach patterns shown in Fig. 93. Clearly evident in this figure is the shock notch.

hl (3hl + h::l) ¢ _ hg ¢ l
ha(h1 + he) (2h1 + ho) 2T 2kt hy =0’
(3 ~ 88)

¢I |’= ¢2 +

3.4.1 Refinements of Shock Fittins_l’rocedures

As indicated in Ref, 29 and Section 3.2.2.2 in the numerical implementation of tran-
sonic lifting line theory for wind tunnel wall interference, the shock is captured for the ot
order approximation to the flow, while the 1** order perturbation is fitted.
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Fig. 90. Cireulstion perturbation convergence, Mo = 0.75, a = 2°, elliptic planform,
NACA 0012 airfoil.

155



AEDC-TR-91-24

5 | WEJMMVIHIWIE

X

Fig. 91. Free field isoMachs for Moo = 0.75. @ = 2°, AR = 8, elliptic planform, NACA
0012 airfoil section.
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Fig. 93. Free jet wind tunnel corrected isoMachs for M = 0.75, a = 2°, AR = 8,
i = 1,05, elliptic planform, NACA 0012 airfoil section.
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On the wing, because of the tangent flow condition, [#o,], = [¢1,], = 0, the shock
conditions (3 — 73) and (3 - 74) specialize to

[m#, - (l}l—)dﬁi] =0 (3 - 89)

where ¢ is the perturbation potential defined in Eq. (3 — 1) and ¢q and ¢, are comporents
of the inner expansion given in Eqgs. (3 — 55), and thus (4.}, = X7y with (¢:). defined

(e ()

. Similerly, the 0** order shock condition on the wing ia

K
(v+1)

(¢ﬂ.}ln = (3 - 90)

and the 1*t order shock condition becomes

(B1.)s0 = —01{$0aa)e0 - (3 -91)

Equation (3 — 90) is Prandtl’s relation for normal shocks and (3 — 91) corresponds to
& perturbation of it. Both (3 — 90) and (3 — 91) can be used as checks on the numerical
codes. Our experience is that (3 — 90) can be satisfied to within 10% in the 0'® ordet
code with & mesh of 100 points in the streamwise direction and 50 points transverse to the
flow. This inaccuracy is important in satisfying (3 —91) in the 1*! order code. Sinee in the
derivation of (3 — 91), (3 — 90) is used, an error in its satisfaction in the 0** order code,
corrupts the satisfaction of (3 — 91).

To alleviate this problem, we have modified the 1** order shock condition (3 — 73a) by
replacing p with g — {u) f(y), where f(y) is a function that has been defined with special
properties for this applicetion. The quantity {u} is the average of the x upstream and
downatream of the shock s and is 0 when (3 — 90) is exactly satisfied. The function f(y),
whose value is 1 on the wing and decays to 0 away from the wing, is introduced to avoid
discontinuous behavior from the shocked region to the unshocked region across the shock
notch boundary., With this modification, (3 — 91) can be satisfied even when (3 — 90) has
numerical errors as hes been shown by its recent implementation in the 1** order code.

With ¢y and ¢1, ¢, ¢= and the pressures on the wing can be obtained.
The past—processiné steps are as follows:
(2} Calculate the shock position on the wing by the relation

z = go(y) + %yn{y) . (3 —962)

Let zo denote the shock position from the 0** order result and x, the shock position
for ¢, then (3—92) gives zn = o+ 3501 (¥wing) = o +62. For the following procedure,
Wwe BSsume T, is less than z¢. (A similar procedure holds for the case in which %, is
greater than z,.)
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{b) For z in the range 2,4 2 2 2 —1, ¢, = Jo, + J.B.¢1_. (Subscripts + end — signify
upstream and downstream, respectively.)

(c) At z = zny, b2 = b0, (%04) + F61.(Z0+) + Szdo,. (o4 )-

(d) At z=z0-, ¢z = v, (20-) + Fb1.(20-) + b2d0,.(20-).

(¢) Forzin 12z > 30—, ¢z = o, + Fé1..

(f) Linear interpolation is used for z between z,_ and xo_.

(g) Finally, for graphing purposes, linear interpolation is used for x between z,+ and Zu-—.

The post-processing implies that {$z)s = (o, }uq, 8o that the shock condition on the
wing is satisfied to the accuracy of the 0** order code.

Figure 94 gives pressure distributions for an unconfined finite aspect ratio wing
(AR = 8) and infinite wing for Mach number My, = 0.75 and angle of attack of 2°
over & NACA 0012 sirfoil. Since Cp = —282/2¢,, (Cp) = ~283K[(y + 1) = Cper. As
shown in the figure, this condition is satisfied for the infinite wing within 13% based on
the D** order result. The condition is ulso satisfied with the same accuracy for the AR =8
finite wing. The effect associated with free jet wall interference is shown in the span av-
eraged chordwise pressure of Fig. 95. Both the aspect ratio effect and the free jet wall
interference agree with qualitative reasoning of the downwash field induced by the trailing
vortex system and by the two—dimensional image vortex system in the Trefftz plane. For
an elliptic planform, the aspect ratio effect is constant along the wing span due to the uni-
form downwash induced on the loaded line by the trailing vortex system. By contrast, the
wall interference is variable as shown in Fig., 96. The sense of the free jet imaging vortex
is the same as the tip and trailing vortices associated with finite span. These reduce the
incidence and lift, moving the shock forward.

In summary, Steps (a)-(g) comprising the shock fitting procedure above provide a
numerical mechanism to ensure that proper shock conditions are satisfied.

3.5 Computational Implementation of Pressure Specified Boundary Conditions

In addition to development of the strong supercritical capability, the high aspect ratio
(HIAR) codes have been generalized to account for pressure boundary conditions on a
tunnel interface, which for convenience and without loss of generality have been assumed
to be cylindrical.

If the interfacial pressure distribution is Cp, (z, #), where z is the flow direction and the
subscript I hereinafter refers to the interface, the corresponding transonic small disturbance
perturbation backwash on the interface is ¢;, = —Cp, /26%/2, where § is the wing thickness
ratio. Also from analyses given earlier in this report, the outer representation of ¢ in the
large height (H) span limit defined before Eq. (8 — 2), it is clear that o, = ¢;. Letting
wor = W(z,0), then
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Fig. 94. Chordwise pressures along span in free field, Moo = .73, @ = 2°, elliptie plan-

form, NACA 0012 sirfoil section.
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Fig. 95. Mean chordwise pressures in free jet, Moo = .75, @ = 2°, elliptic planform,
NACA 0012 airfoil section.
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Fig. 96. Chordwise pressures along span within free jet wall boundary, M., = .75,
e =2° u = 1,05, elliptic planform, NACA 0012 airfoil section.
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rE

W= ot 4 (3-93)

e 26318

where g, at z = —00 is sssumed to vanish. If lateral symmetry W(z*,8) = W(z*, —8)
is assumed, where @ is measured from the intersection of the vertical plane of symmetry
and the interface, W can be represented as the Fourier series (3 — 48b) where the W, are
given after Eq. (3 — 49). On the basis of the analysis given in Section 8.1.2 the additional
downwash W on the loaded line due to the interaction of the trailing vortex system with the
walls or interface can be represented by a superposition of two effects. If wp corresponds
to the downwash increment associated with a free jet and wy is an increment associaled
with a pressure specification, then

w = wy + wy = y(0,0,2%) , -B<s"<B. (3—94)

In terms of notation used in the code modules related to PHI1, w + tint. Based on the
analysis described in Section 3.1.2

w = "‘/7;;"“ i n(—l)“i Ilinez) [ imle'lpyr(a*)dz®, (3 - 95)

z n=13,5, P J:l(j'l!) —zo

where K is the transonic similarity parameter, and j,, are the zeros of the Bessel functions
" -

In Section 3.1.2, approximations for the inner integral have been used that suggest
that the downstream features of the interface pressure do not contribute strongly to w.
Because of the substantial exponential factor in the integrand, (3—95) can be approximated
by including only the first term in the inner sum to give

w = ,/Jl{gt i ""(—1)“-‘?%./°° eI I, (2 )dz" . (3-196)
n=1,3.5, RWR - -

Equation (3 — 96) has been used to evaluate a special interface pressure distribution which
has some features of thoae discussed in summaries of Calspan AEDC WIAC related effort
contained in Refs, 46 and 47. The model interface pressure distribution used with the
generalized HIAR code is

Cpy = 2¢lagn(2*) {1 + €1 c080} , —0 < 2* S o0 (8-97)

where ¢; and ¢, are constants, and sgn(z) = 1 for z > 0, —1 for z < 0. Equation (3 — 97)
implies that

W(z") = 24.%(1 + &5 cos)e—1="1 (8 — 98)
Wi(z*) = 2‘;:,’3 ei="l (3 — 99q)
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Wa(z*)=0,n>1. (3 — 99%)
Substitution in (3 — 96) gives
wi(z") = — €12 Jilinz) (3 — 100a)
SRVEQ +ju)e* Jilin)
and ,
w1 (0) = —cfa)ul (3 — 1008)

262/8/K(1 + ju ) (1)
A numerical evaluation of Eqs. (3 — 100) redures them to the following relations:

1.855¢1 €z J1(8.8822*
wi(z*) = Ji?ﬂjii: 1( ~ 2 (3 — 101a)
' O84¢ee
wl(ﬂ) = 627?;‘—}% . (3 - 1015)

Equations (3 — 101) were utilized in computing the effect of interfacial pressure boundary
conditions in the HIAR code. Figure 97 shows the effect of the interfacial distribution
of (3—10) on the prediction of the midspan chordwise pressure distribution for the NACA
0012 elliptic wing case mentioned previously for &; = ez = .2. With all other parameters
the same, the streamwise and angular pressure dependence results in a loss of lift from
the free jet and unconfined flow distributions. Associated Zierep singularity behavior is
discussed in Appendix B. This example demonstrates a capability which will be useful
in testing and exploiting concepts for integrating asymptotic methods with experimental
measurements, (AIM) is a new class of WIAC techniques. AIM concepts will be discuseed
in Section 4. Here, the HIAR code can be & useful means of testing various concepta.
3.6 Viscous Fifects

Viscous effects play an important role in wall interference estimates. In connection
with this observation, recent complementary Rockwell IR&D effort indicates that viscous
effects on & NACA 0012 airfoil for a free fleld case close to that of Fig. 94 can produce a
substantial movement in the shock from its trailing edge position predicted by a purely
inviscid full potential solver. This is shown in Figs. 98-100, where an interacted boundary
layer solution moves the shock system to the midechord position. On the basis of this
experience and other related activity reported in Refs. 48-51, another contemplated future
development related to the AIM nctivity is a viscous version of the HIAR, code.

3.7 Nonsimilar Section Wings and Lockheed Database

The primary emphasis of this phase of the contractual effort was focused on relating
the high aspect ratio code to an experimental database. Accomplishments were:

e The code was generalized to handle nonsimilar section wings in which the airfoil
sections are not the same shape.

¢ One of the wings tested in Ref. 52 was analyzed with the interference—free code
(0*h order) as well as the software for assessing wall interference (1** order).

o The 0 order code was used to establish the correctibility of the Ref. 52 data.
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Fig. 97. Chordwise pressures at midspan with pressure boundary condition, elliptic
planform wing NACA 0012 airfoil, Mo = 0.75, a = 2°, u = 105,
AR=8,€1 =€z=.2.
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Fig. 98. Comparison of predictions from viscous interacted full potential equation solver

and experiment.
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Fig. 99. Density level lines for inviscid flow — shock at trailing edge, NACA 0012 airfoil,
Mo = 0.799, a = 2.26°, 1650 iterations.
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Fig. 100. Density level lines for viscous interacted full potential code. Viscous effect

moves inviscid trailing edge shock to midchord, NACA 0012 airfoil,
Mo = 0.799, a = 2.26°, 1650 iterations.
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3.7.1 Swept Wing Comparison Database

In Ref. 53, databases were reviewed as candidates for interaction with the contractual
effort described herein. One of these (Ref. 52), although having sparse pressure data in the
far field, was selected to provide an assessment of how the methods of this contract might
be applied. In this experiment, three swept wings were tested in the Lockheed tunnel,
isolated from, and in combination with, a fuselage at transonic Mach numbers.

3.7.2 Code Gen&a.liza.tion to Nonsimilar Section Wings

Table 2 (Table 1 from Ref. 52) gives the geometric paremeters of the wings tested and
Fig. 101 gives a sketch of their planforms. In Fiz. 102, the root, midspan, and tip sections
are indicated. This wing has thickness, twist, and camber distributions that vary linearly
along the span and is therefore non—similar. Accordingly, the similarity formulation used
in Section 3.2.2 must be generalized.

This can be accomplished by simplifying the problem described by Egs. (3 — 58)
and (3 — 59) with the transformation

_@=¢—:;—1 : (3 - 1020)
with
¢rr=yld+w) , (3 - 1028)
Equation (3 — 58a) implies
Lig =0 , (3 - 102¢)
Equation (3 — 58b) leads to
@2_—2:;;?8 asr— ™ , (3 — 102d)
and
&)(z,00=1 (0<z<1) . (3 — 102e)
From Eq. (3 — 58c),
o)=L . (3= 102f)
¢FF

Thus, the use of (3 — 102a) and (3 — 102b) reduces the calculation to solution of equations
identical to the similar-section-wing equations, (8 — 61), with the exception that the
nonlinear term has ¢y, evaluated not at z = 0. In addition, the quantities ¢ and w are
used parametrically at ench span station from a knowledge of I'o(z), the spanwise loading
of the 0t order problem. This corresponds to a kind of strip theory. In order to obtain I'o,
the semispan wing is divided into n span stetions, and the zeroth order problem (3 —57) is
solved at each. For the results to be presented, n was selected to be 5. Depending on the
planform, some investigation is required to determine if this value provides a good enough
approximation of the spanwise loading to obtain the ¢, variational solution accurately.
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Teble 2. Wing Model Geometry (from Ref. 52)
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WING
A B C

AR 8.0 3.8 2.6

A 0.4 0.4 0.3
hefy» 9e9- 25.0 30.0 38.4
8., deg. 2.76 2.50 2.38
By, deg. -2.0k -4, 00 -5.79
(t/e),, 12.0 6.0 7.0
(t/e)es & 12.0 6.0 11.0
5/2, em?® {in?) 528.0 (81.8) 530.0 (82.1) 523.0 (81,0}
b/2, em (in.) 45.7 (18.0) 31.8 {12.5) 26.1 (10.26)
Ly em (in.) 16.51 (6.50) 23.88 (9.40) 30.83 (12.14)
Cer em (in.) 6.60 (2.60) 9.55 (3.76) 9.25 (3.6%)
MAC, cm (in.) 12.26 (L.B25) 17.71 (8.974) 21.95 (8.642)
Yuac. cm [ind) 19.59 (7.714) 13.60 {(5.355) 10.68 ([4.20€)
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Figure 101, Planforms of tested wings (from Ref. 52).
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Figure 102. Wing A sairfoil sections (from Ref. 52).

173



AEDC-TR-81-24

3.7.3 Results

Chordwise pressure distributions on the swept wing (Wing A) configuration of Ref. 52
were computed at various angles of attack a, and Mach number M. To achieve rapid con-
vergence, the streamwise grid was clustered near the blunt leading edge. To demonstrate
a typical calculation, Figs. 103 and 104 show the effect of wall interference and finite apan
corrections on the chardwise pressures of Wing A st nearly midspan, and at two angles of
attack. The largest corrections appear to he near the shock at @ = 0°. By contrast, the
more supercritical case corresponding to a = 1° shows a greater extent of the corrections.
For both incidences, they are most prorounced on the upper wing surface.

In Ref. 30, modifications to the boundary value problem (3 — 57) are discussed for a
yawed wing. The analysia shows that these changes occur in the far field for the three—
dimensional 1** order perturbation flow and in both the far field and equations of motion
for the 2 order flow.

The HIAR code is based on a theory not designed for swept wings. This is because
the dominant approximation of the inner flow assumes that all spanwise stations are ap-
proximately two dimensional. If a discontinuity occurs in the slope of the leading edge, a
local three-dimensional flow occurs, nullifying this assumption. Such discontinuities occur
at the root apex and tips of swept and other kinds of planforms. More general cases are
cranked shapes. Asymptotic procedures are under consideration to treat these corner flows
and involve “canonical” numerical problems for the nonlinear flow near the corner. These
canonical problems remain the same for planform changes away from the corner.

In spite of this limitation, it was of interest to assess the correctability of the Wing A
results using the 0*® order code. Figures 105 and 106 indicate chordwise pressure compar-
isons of our 0** order code with data from Ref. 52. In both figures, the effective tunnel
Mach number and angle of attack were modified to match the data. The similarity of the
pressure distributions suggests the correctability of the test data. In Fig. 105, the influence
of shock-boundery layer interaction is not as great as in Fig. 108. For treating viscous
effects more effectively, under complementary IR&D funding, the contractor has developed
an interactive boundary layer code based on Green's Lag Entrainment model that would
presumably reduce the effective increment in K associated with the combined Mach, angle
of attack corrections used in Figs. 105 and 106. This was used to obtain the previously
discussed results indicated in Figs. $8-100.

In comparisons such as Figs. 105 and 106, what needs to be analyzed are the combined
effects of sweepback and viscous interactions on the interference. In Ref. 29, the similarity
parameter X was allowed to vary from the 0'* order flow to the 1°* order wall interference
flow. This flexibility should be investigated with the aim of systemizing the corrections
that can be obtained through studies of the type associated with Figs. 105 and 106. The
variation of K is expressed in  perturbation form related to the asymptotic expansion of
the perturbation potential ¢. This perturbation gives the flexibility of varying the tunnel
Mach number and geometric angle of attack to correct or simulate free field conditions.
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Figure 103. 0** and 1* order chordwise pressure distributions on Wing A, 5 = 0.45,
M =.76,a=0°
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Figure 104. 0** and 1** order pressure distributions on Wing A, = 0.5, M = .76, «a = 1°.

176



M=072,a=1°
*+ UPPER SURFACE
* LOWER SURFACE

| 1 1
oTH ORDER 00051

-1.0

AEDC-TR-91-24

SCBO711

EXPERIMENT
M= 0.7€, o = 2.95°

Figure 105. Comparison of theoretical and experimental chordwise pressures for Wing A,

n = 0.5, tested at M = 0.76, a = 2.95°.
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Figure 106. Comparison of theoretical and experimental chordwise pressures for Wing A,
n =5, tested at M =0.82, a =2.9°
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3.8 Fuselage Effects

A high aspect ratio wing-body configuration is shown inside & wind tunnel in Fig. 107,
In what follows, the effect of the fuselage on the theory for wing-alone transonic wall
interference will be considered. For this purpose, the fuselage will be considered slender
and axisymmetric. Within the coordinate system shown in Fig. 107, the equation of the
body is

B=r-iF(z)=0 . (3—103)

The anelyees in the previous sections and Ref. 20 indicate that the transonic high aspect
ratio wing flow in a wind tunnel could be treated by an extension of the lifting line theory
for the unconfined case discussed in' Ref. 30. The principal ideas are that:

1) The near field (inner expansion) in the vicinity of the wing is two dimensional in the
sense that the span stations are independeut. .

2) The finite span effect is felt through the effective downwash of the trailing vortex
system on a bound vortex or lifting line simulating the wing. The trailing vortex
system corresponds to the cuter (far field) expansion.

3) The effective “twist” of Item 2 is compu‘ed by a form of Biot Savert’s law which was
systematically derived from an integral representation based on Green's formula. This
twist represents matching of the inner and outer expansions.

4) The wall interference problem can be solved by using an appropriate redefinition of the
Grecn’s function used in the Green’s formula of Item 3 which satisfies the appropriate
wall boundary conditions in contrast to the free field definition.

Based on the findings of Section 3.1.1.2, the Green'’s function amounts to imaging
the streamwige projection in the Trefftz plane of the wing trailing vortex system into the
projection of the wind tunnel wall boundary. This theory is an outgrowth of a systematic
asymptotic treatment of the transonic case. It gives a Green’s function which has the
same form as for incompressible flow derived by a different method in Ref. §4. The basic
features of the lifting line ideslization of the flow are shown in Fig. 55 for a circular wind
tunnel.

K the tunnel Mach number is such that the far field is subsonic, then Green’s for-
mula can be used to solve the Prandt] Glauert equation of motion which can be recast as
Laplace's equation if the transonic similarity parameter X is scaled out in the usual way.
Green’s formula can then be used to give an integral representation of the flow. Charac-
terizing the ficld by a perturbation potential ¢ which hes been defined in Section 3.1.1.2,
the integral representation (3 — 10a) with addition of the body is now

¢ = Isopy + Fwarts + Io (3 — 104a)

Iopy = /B oy j (¢%ﬂq) ds (3 — 104b)
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Fig. 107. Confined high aspect ratio wing-body model.
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and IwarLs and J, are defined in (3 — 10b) and (3 — 10c) and G = 0 on the walls as
in Section 3.1.1.2. Therefore, if a free jet wall boundary condition ¢ = 0 is considered,
IwarLs == 0. For convenience, the thickness effect of the wing will be neglected in what
follows. The analysis can be easily extended to include it.

It will be seen that the principal effect of the body is to modify the integral I, in
(3 — 11a). This canses a change in the finite—aspect-ratio downwash all along che loaded
line. A mare local effect occurs in the near field at the wing~body junction in the case of the
flow near the tips or a kink at the center of a planform. In these regions, the assumption cf
independence of spanwise sections is invalid. The resulting fully three-dimensioral flows
are assum-.d to lead to only a secondary influence on wall interference and wil! therefore
not ke considered in what follows. The main focus will be the calculation of 1,. Prior to
ita calculation, we note that IBomrfis given by

T
Isopy = llfll, ./o % '2ﬂ‘ﬂGnon?rdf . (3 —103)

By linenrity of the outer flow field, the body is assumed to be characterized by a line source
which is superiniposed on the trailing vortex sheet flow shown in Fig. 55. Here,

m 2% = A% -
fﬂpap' 2z’ (3 - 106)

where A is the local cross sectional area. Because of the superposition property, a more
general fuselage shape can be considered. For such a configuration, (3 — 105) and (3 — 106)
would still be valid.

In a free field,

T N S— (3 - 107)

& -0t FE-0r

where for y, 1, 2, { will hereinafter signify acaled coordinates.

For free jet boundary conditions on a circular wall, it was shown in Section 3.1.1.2
that

__1_ = COST e-x"hlsnel"a('\ntr)Jn(AnkP) _yaf
G = ..=z_:m ﬂzk: W .. , (3 -18")

where the J, are Bessel functions and A their zeros in accord with definitions given
earlier, and by symmetry the ¢ argument given in (3 — 13) is omitted. Because of axial
symmetry, the effect of Inopy on the finite aspect ratio downwash effect will be zero.

To treat I,, the result obtained from a systematic approximation procedure for the
wing—slone case will be generalized. The generalization will be obtained by modifying the
imaging solely in the Trefftz plane. Accardingly, the doublet sheet interaction with the free
jet tunnel boundaries will be considered as depicted in Fig. 108. As in Section 3.1.1.2, the
effect of the line doublet is obtained by superposition of individual elements. A circular
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cross section body is analyzed herein. More general cross sections can be handled by the
techniques described in Refs. 49 and 51.

To expedite the solution, only slender bodies in the that the maximum body
diameter is small compared te the wing span will be treated. In fact, in the outer limit
certain stretched coordinates were introduced in Ref. 29. Denoting the span in units of
the chord as b, these are

" =

L ypr=L z“=% , B=6§"% fixedas§—0 .  (3-108)

| &
t

Accordingly, € = £5~. Obviously, other choices are possible besides using § as the body
maximum thickness in (3 — 1). This option gives a region of transonic flow sround the
body ihat has lateral dimensions of O(67?). :

To obtain the image of a doublet in the annular region € < r* <  shown in Fig. 108,
y.’ + 3"

perturbation methods are used. Here, r* = . Two cases can be identified:
@) ¢(=0Q)
LG (=0(e)

Case (i)
Denoting the complex potential as F(Z) = ¢(z,y) + i¥(z,y) with Z = 2 + iy, where
the stars on y and z will be dropped, the appropriate expression for F is

. 1 e 1 1 1)\é
2’"‘"=z——f+zf(z—:g)-(:=+a)z

@ @ @ (3 — 109)
+

@ ~i=

In (3 — 109), (Drepresents the doublet, @its “reflection” in the tunnel boundary r = g,
@)is a compenasation term to make the body a stream surface, and @)is a constant added to
maich the Case (ii) expression for ¢ in an overlap domain of mutual validity. This feature
will be used to obtain a uniformly valid representation in {. Term (3)is associated with the
behavior

®+@é(:—,+;1,_.—)z as Z—0

and the circle theorem for homogeneous Dirichlet conditions. Thus if A = :1;— + %,

ore+@=4(2-%)
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Fig. 108. Projection of doublet sheet in Treffiz plane.
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andsince7=§’-onr=e,thm

O+ @+@ = A(Z2-Z)
so that
Re(@+ @+ @) =0
which ia the desired property.

It is important to note that the reflection term (§) does not spoil the boundary con-
dition on the tunnel boundary |Z| = .

Case (ii)
For this case,
o L _ef 1\ 2( &
WMFP=7 370 (z—‘}) p (1 C’) : (3-110)
Q' @ @'

In (3 — 110), Term @' plays the same role at |Z| = u that @did in (3 - 109) at |Z| =e.

Equations (3 — 109) and (3 — 110) can be used for separate ranges of a convolution
integral representing the perturbation potential of the doublet sheet in the Trefftz plane. To
remove arbitrariness associated with the cutoff between Case (i) and Case (i), a combined
uniformly valid expression in { is preferred. This is obtained for the function

U(2;¢) = 2xiF — 'lec : (3—111)

An intermediate limit is considered in which

C,,=% fixedas ¢—0

where € << np(e) << 1.

Thus, for both Case (i) and Case (ii}),
Z &
U= ——'Fz +0 (;??) . (3-112)

The uniformly valid representation is therefore the sum of the representations for Case (i)
and Case (ii) minus the common part given by (3 — 112). The resulting expression is

oot 1] s l_(_l_ l)ﬁ €z _
2""F‘z—c"ﬂ{z_»g z-%}+c AtalztoE - B0
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Taking the real part in (3 — 113), the resulting expression for I, is:

v f. &
L=t/ 'f(‘){(z—cP e (l WNCrT e 0=)

+lz[ pﬂz = éz ]"'l (3 - 114)

gy er gyl
—(Fl’-"'%)u’iz“'(’iﬂ}dc

3.8.1 Discussion

kquation (3 — 114} represents the downwash expression associated with finite span
for a high aspect ratio wing-body combination in which the body maximum thickness is
a small fraction of the span. This expression is the generalization of that being used for
the inner solution far field for the wing-alone code. It contains interactions between the
tunnel boundaries and the body. It is clear that the most important contribution is when

¢ = O(e).
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4. ASYMPTOTICS INTEGRATED WITH MEASUREMENT (AIM)
NCE EST, 10N

Analytical and computational techniquea were described in the previous sections to
predict transonic wind tunnel interference over slender and high aspect ratic models. These
methods are oriented to interference prediction strictly from a lmowledge of the tunnel and
model geometry as well as the flow parameters such as test section Mach number. They
are based on an inviscid approximation of the flow. However, by allowing the boundary
conditions on an outer wall or cylindrical interface to correspond to the specification of
pressure, viscous znd other phenomene may be indirectly incorporated into the anal:-sis
in accord with methodology developed by workers at AEDC, NAE Ottawa, NASA, and
elsewhere. For purposes of the following discussion, such techniques will be grouped under
the category of Wind Tunnel Interference Assessment/Carrection (WIAC) methods. By
contrast to the methodology in Sections 2 and 3, these approaches combine the analysis and -
computation with experimental methods to determine the magnitude of the interference as
well as the feasibility of accounting for the interference either by simulating an interference-
free condition corresponding to the test environment or providing some sort of post—test
correction to the data.

In what follows, procedures are described that can augment the effectiveness of WIAC
concepts. They exploit the theoretical knowledge developed under this contract described
earlier in this report as well as experimental measurements in the determination of wall
interference. The scope of the discussion is to outline the basic concepts. A more detailed
feasibility study as well as proof of concept is intended as future effort.

4,1 Interference on Moderate and Low Aspect Ratio Configurations

As described in Ref. 29 and elsewhere, the two variable method (TVM) provides a
basis for simulating the effective body shapes in the tunnel which may differ from the
“hard” physical geometry of the model due to viscous interactions and other effects. If
this representation is assumed to be the same in the free field, then its knowledge from
mensurement and computation can be utilized with further computation to obtain the free
field aerodynamics or the interference. Existing transonic TVM’s such as those described
in Ref. 13 typically employ a second measurement on the interface to establish the effective
body shape with an iterative computational inverse procedure. In the inverse method, a
first guess is successively refined in & feedback loop to satisfy the second interface condi-
tion. A concept has been developed in the contract to avoid this loop or accelerate its
convergence. Application to nonaxisymmetric compact configurations that satisfy a class
of requirements which may be of considerable practical WIAC utility has been investigated.

The method is motivated by slender body theory. Using previous notation in which
a = angle of attack, § = maximum thickness ratio, b = semiepan, h = characteristic wall
lateral dimension, the flow over a test article shown in Figs. 109 and 110, and given by

r = §F(z,0) (4-1)
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is considered, where the normalized cylindrical coordinates

o &l
o =t
& fwl
o |

T = » Y= »y S y = 1 {¢—2)
are employed and ¢ is a characteristic body length. In the inner near field, close to the
model as described in Refs. 29 and 30, the following asymptotic expansion is assumed to

be valid for H = hé fixed*
&
T —$+25’1°$55'1(4‘)+52¢1\3‘!r 1%} A) + 64 log S (z,4°, 2 A) + 6ta(z, y", 2%, 4)
(4-3)
which is valid in the inner limit

A=

on| R

7] ) fixedas 6§ —0 . (4—4)

The “far field” of this inner expansion worked out in Ref. 30 is if r* = r/§ — oo

D;(z)cosﬂ + E1(3)00528 +

w1 = Si(z)logr* + g1(z) + - ) (4 — 5a)
a1 = 25151 logr* + ga1(z) + 2Sa2(2) + -+ (4 — 5b)
w2 = 5157 log’ r* + Sa(z) log r* + g2(2) + -+ (4 —5c)

where if A*(x) = normalized cross sectional area, $; = —:(-)- and Sz can be found from
integral theorems based on the inner boundary value problems but will not be considered
further here. This approximation is nonuniform with respect to r*. Two other approxi-
mate representations are required to overcome this nonuniformity. For H = fixed, and a
cylindrical wall, there is an outer region in which the asymmetries relax to nonlinear axial
symmetry in a manner that has been discussed in Refs. 29, 30 and elsewhere**. Prelimi-
nary studies based on integral equation asymptotics and particular solutions indicate that
the wall reflections are regular functions of r* which do not perturb the singular behavior
that controls matching with another representation needed in an intermediate domain to
obtain consistent approximations in the higher orders. This fact has implications on the
magnitude of the lift interference.

From Ref. 30, the outer expansion of & is:

7=t + 841 (z, 5,7 K, A, H) + 6 logb¢ay + 64¢2 + - (4 - 6a)

* The H — oo approximation made in Ref. 29 will be suppressed.
+* This property can be extended to mildly noncircular test sections such as octagonal
shapes or measurement interfaces that are sufficiently distant so that the angular pertur-
bations are weak. This can be formalized asymptotically.
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Fig. 109. Slender vehicle confined inside cylindrical wind tunnel walls.
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Fig. 110. Front view of wind tunnel model confined by cylindrical walls, showing important
regions.
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for

&,§,5, K, A H fixedas 6§ + 0 . (4 — 6b)
The equation for ¢; is the Karman Guderley (KG) equation,

(K_(T+1)¢1.)¢1.,+ -:‘.:(Fm,),:ﬂ (4_7)

where no tunnel perturbation in K is assumed.

In contrast to a large H far field or a subsonic line source free field asymptotic, an
axisymmetcic pressure-specified interface condition for (4 —7) is

$1(z, H) = F(z) (4 -~ 8)

which in accord with previous remarks is assumed to leave the free field # — 0 asymptotics
of (4 — 65) unaffected to dominant order. These are:

= Si(z)log 7 + m(z) + (7 + 1S’-‘S‘”) # log? ¥ + T(z)f log# + V(z)i* + -+ (4 —9a)
¢31 = —2313;_ logr'" + 21 deen (4 —-— gb)
$2 = —Diz:m—w+3 Silogf+gg+-r . (4 —9¢)
The intermediate expansions are
& —_— _—
—=z+6 log 651(z) + 62951(31 12)+ 63"'2 + 4 1082 6¢32(=, v, 2)
v i . (4 — 10a)
+ 5 1055%1(3:#:3) + 6‘¢3(3’y13) +oe
for
z,y, 5, K fixedasn § -0 , {4 — 10b)
where jor matching with the inner expansions the following representations hold:
&1 = Si(z)logr + g1(z) +--- (4 - 11a)
E:D‘:"'a+ (4 —118)
Far = gu1(2) + Salz) + Lo— (S")r logr
3 (4 -11c)
+ [(r + 1)(915'1)' - KS{ —(v+ (ST +
Fon = -85, + L2500t (4-11d)
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— 29

= 2r " + 518} log! r+ Safa)logr + 02(e) (4 - 11¢)
- Y+1 yoan 2 2 2 2
+ 5187r% log® r+ T(z)r’ logr + V(z)r* . (4 -11f)

For purposes of assessing drag interference, the key ides in one possible AIM TVM concept
being cvaluated ia that Fga. (§ - 11) can be used to determine the “cffective body™ inter-
action with nonlinesr outer flow field. For example, it is envisioned that (4 — 1la) can
be used to determine the effective source strength S1(z) by & simple radial differentiation,

ie.,
Qr 6251 (:F)
r

7 = 861, +0(F) = (4-12)
and s measurement of the radial velocity ® on an interface surface r = O(1) at each =
stzticn. The function 51(z) can be used with the boundary condition associated with the
dominant term of (4 —9a) to obtain the solution of (4 — 7) subject to (4 —8), where ¥ can
be obtained from pressure measurements as

F= -%j;c,(z,mdx . (4—13)

The solution of the outer KG problem will give the free field drag and the interference.
For example, under mild restrictions on the equivalent body of revolution source strength
distribution §;(z), the free field wave drag D is

1
P 2"64‘/0 S1(2)a1 (z; K)dz (4—14)

based on B momentum theorem given in Ref. 30. In (4 — 14}, the function g; is computed
from the numerical solution of the free field KG problem.

In accord with previous remarks, it is envisioned that this approach may be generalized
to weak deviations about axial symmetry on a measurement interface in the outer region
F = 0(1).

Analyses of the free field structure for the highly and intermediately loaded cases
have been given in Refs. 48 and 55, respectively. Reference 48 describes the case where

K = 1=Ma with ¢; = o’In J=, and Ref. 21 considers the thickness § = O(e1). For
Ref. 48, in contrast to the case described in detail above, the first order term in the near
field is approximately a dipole. No intermediate expansion is needed to match with the
outer representation which still relaxes to KG axial symmetry to dominant order. However,
the effective source strength 5}, rather than being controlled by the rate of change of cross—

sectional area A*(z) as in the weakly loaded case, is given by:

s =1 ﬂ‘%ﬁfr’) (4-15)
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where £;(z) is the cumulative free field lift up to & station z, which can be computed by
Jones’ theory. For a cambered, zero—thickness wing on (0 < # < 1, —zLE < z € zLE),
for which y = ef(z), &i(z) = —nf'(z)23 (). Studies are in progress of the matching to
assess what is the role of the wall reflections on the inner flow field structure and their
importance relative to the interference Lift. For drag of a zero thickness configuration, the
effective source strength distribution may be inferred from the measurement procedure
previously described, since the outer solution has the same dominant behavior given by
(4 — 11a), in spite of the different interpretation in (4 — 15).

The relaxation to the structure given by (4 —9a) in about ther =0 (;E) scale of the

lift dominated theory has been corroburated with zonal gridding procedures and free field
Fuler calculations of K. Szema which were funded under another program using codes and
elgorithms developed by S. Chakravarthy. The F-14 configuration shown in Fig. 111 was
analyzed with simulated flow-through inlets at Mo, = .8, and a = 13.5°. The isobars are
shown in Fig. 112. There is also a suggestion of near field 99';-! behavior in the contours
which are however skewed by strong tip vortices.

The relaxation shown in Fig. 112 is a suggestion of the feasibility of the radial velocity
unfolding concept previously indicated to obtein the effective source strength S;. One
possible application of the method could be the cruise missile configuration discussed in
Ref. 47.

4.2 High Aspect Ratio Configuration WIAC Method

Considering the high aspect ratio arrangement shown schematically in Fig. 113, at a
wake station P associated with a near field limit of the outer solution, downwash due to
the vortex sheet reflected in the tunnel walls has been derived and discussed in connection
with the lifting line theory of transonic wall interference in Section 3.1.1.2. Suppressing the
additional fuselage upwash effect and its interaction with the walls, which can be handled
by conformal mapping procedures, the net downwash ina y = 0 downstream plane of the
wing alone is :

__1¢y* 1 # w(z -

where using previously defined notation p = H/B = §, H = 513k, B = §/%b, v is
proportional to the free field infinite aspect ratio gectional lift coefficient and w,; is the
downwash effect associated with deviation of the pressure field on the interface from zero
perturbation pressure, where from Section 3.1.2, if the interface pressure is Cp,

. = Cp(z",H,6) , .
Wiz ,a)=f -%,—ﬁ)dz

= Wo(z)+ f: Wa(z)coand

n=1

z=Hz* , j=6y=Hy* , i=8Lz=H
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5Cc45487

Fig. 111. F-14 configuration.
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with 1T
Wo=— f Wi(z*,0)d6
T Jo

2 w
,.=—f W{z*,8) cos nfdf
T Jo

and

1 =] Jl(jnlz') juo i lem
W~ — (-1t ——r" e iml=" I W, (z*)dz*
1 ‘JI_{Z a=§5,___ ( ) J:;(Jnl) oo ( )
where K is the transonic similarity parameter and the j,; are the zeros of the Bessel
functions Jn(z*).

Equation (4 — 16) can be used to determine the free field lift and span loading as follows:

1., Measure the left hand side w at PQ. A generalized form of (4 — 16) applies at y # 0
and the measurement could be made above or below y = 0, if this is more practical.

2. Equation (4 — 16) can be inverted once and for all numerically and presumably also
analytically with a Green’s function based on conformal mapping.

3. An analytic inversion of (4 — 16) can be used to compute v'({) by a quadrature. This
could be interpreted as the “effective” span loading associated with viscous effects.

4. The function 4'() in Item 3 can be used to compute the free—field finite aspect ratio
downwash correction weo on the loaded line given by

0 =L f T©

poed i (4-17)

where the principal value of the integral is to be taken.

5. The HIAR code can be used with weo to compute the free field span loading and Lift.
4.2.1 Discussion
Steps 1-5 in the high aspect ratio AIM method sidestep the need for computationally
intensive three—dimensional simulations as well as time—consuming gridding preparation.
It however requires a knowledge of the downwash fleld behind the model. This can be
done by & rake or other instrumentation. Once this is obtained, (4 — 16) can be inverted
using Fourier series or collocation methods. The approach indicated is by no means limited
{0 & downwash measurement, Other derivatives of the scheme can be conceived such as
using pressure measurements. Since the approach depends on the application of lifting line
theory, its elasticity with respect to moderate aspect ratio shapes needs to be assessed.

This can be achieved by comparisons with three—dimensional numerical simulations and
experiment.
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5. CONCLUSIONS, HIGHLIGHTS AND SUMMARY OF FINDINGS

Transonic wall interference asymptotic formulations developed under & previous
AEDC contract, “Study of Asymptotic Theory of Transonic Wind Tunnel Wall Interfer-
ence,” {Cvutract F40600-82-C-0005) have been computationally implemented. This ac-
tivity motivated additional asymptotic studies and the development of AIM (Asymptotics
Integrated with Measurement) techniques that are designed to extend the applicability of
the computational and analytical methods.

Key findings and highlights of the effort are:

1. The “Area Rule” for transonic wall interference of slender airplane test articles
discovered in the previous cantract, applies for pressure boundary conditions in
the large height limit, # — co. Its validity for pressure interface boundary
conditions needs to be nasessed for H = O(1).

2. The scalings associated with the gauge functions appearing in the formal asymp-
totic expansions for the interference potential in the slender body limit agrees
with that deduced by Goethert in Ref. 56 using non-asymptotic methods and
validated against experiment.

3. Pressure specified interface boundary conditions over confined, slightly subsonic
slender bodies give an asymptotic triple deck structure resembling that arising
from free jet and and solid—wall, classical conditions, providing that the interface
circumferential variations are mild. Such angular distributions are anticipated in
the sensible far field with circular or octagonal test sections, even for realistic,
compact fighter configurations having appreciably asymmetric cross sections, but
at moderate angles of attack. This occurs because of the strong three-dimensional
fow relief associated with this small average effective thickness ratio or charac-
teristic flow deflection (§) regime and the associated rapid relaxation to axial
symmetry in the radial direction transverse to the freestream.

4. The inner deck has the usual Oswatitsch Equivalence Rule cross-flow harmonic
structure. For large height, the intermediate layer is a weak perturbation about
free field conditions, where the strength of the perturbation is o(H) as
H — oo. In this region, matching with the outer deck shows that the effect
of the pressure boundary conditions is felt in an average senee, i.e., only the first
few harmonics of the circumferential veriation are important. The cuter or “wall”
deck is an effective tube vortex reflection of the multipole representation of the
test article. Higher order approximations of the intermediate or central deck lead
to ai:g- terms in the equation of motion. However, the significant computational
overhead of the resulting three dimensional formulation can be avoided since the
@ veriation is simple and can be factored out due to linearity. This leads to a

* The asymptotic treatment of these pressure conditions was undertaken over and above the
Work Statement of the current contract.
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two dimensional (axisymmetric) formulation similer to that encountered in the
FISWCI (free-jet or solid wall cylindrical interface) problem, except with forcing
terms (in the higher approximations). These can be readily treated with superpo-
gition procedures that &re allowable due to linearity of the variational interference
equations.

5. With pressure interface boundary conditions, the H scaling of the similarity laws

for ACp and ACp, respectively, the interference pressures and drag, are un-

from the FISWCI case. Again, in contrast to the H = Q(1) problem,

but as in the FISWCI case, the H scaling is known, eliminating the need to solve

for new H's associated with different test facilities when all other parameters are
unchanged.

6. For solid walls, and for the H = O(1) numerics, the structure of the upstream
and downstream far fields wes determined. For a blunt or stinged base, & uniform
source flow at infinity results, in which ¢ ~ +Cz as ¢ — Leo, where C ~
body base area. For a closed body, ¢ =~ +I} as 2 — +o0, where D=doublet
strength which consists of a linear part, proportional to the body volume, and a
nonlinear portion proportional to the average kinetic energy of the interference
perturbation of the streamwise velocity component. It was expedient o avoid
this term in computational implementations for closed bodies. Homogeneous
Neumsnn conditions were used at the inflow and outflow boundaries z = oo
rather than the doublet condition. This step was justified due to the exponentially
small higher order terms in the # — tco far field expansion. This structure is
simnilar to two—dimensiona] flow solutions worked out in Ref. 57, in which the wall
condition “drives” a fester decay than the algebraic one associated with the free
field. The exponential rate of decay for the axisymmetric case of slender body
theory differs from the two-dimensional airfoil case since these are eigenvalues
arising from the Sturm-Licuville problem for the Green's function and these
differ in both situations.

7. Consistent with the contractual Statement of Work (SOW), Task 1.0, a code
solving only the FISWCI case was developed. (Pressure boundary conditions
however can be treated by the high aspect ratio code developed under Task 8.0.)
Two solver modules (RELAX1 and RELAXV1) were developed to model the
Oth order free field basic flow and its 1st order wall interference perturbation,
respectively. An excellent experimental validation of RELAX1 was achieved for
2 blunt nosed axisymmetric body tested by Couch et al. It ia believed that an
intrinsic element in obtaining this validation was the special procedure developed
to discretize the boundery points near the logarithmically singular line ¥ = 0 in
the inner Axis deck of the flow. In keeping with the thrust of the contractual effort
that combines the best features of asymptotics and numerics, these discretizations
used the inner expansion instead of & one term Taylor expansion with a remainder
to characterize the nodes near ¥ = 0.

8. Special techniques extending those originally developed by Small and Cole were
uatilized to fit the shock in the numerical treatment of the interference perturba-
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tion flow. Schemes were worked out to surround the shock by an “upright” notch
having vertical and horizontal sides. This scheme which is easier to program
and avoids subtle issues associated with an alternative method which actually
followa the shock curve with a “staggered notch” was computationally imple-
mented. More effort is required to compare the effectiveness and accuracy of
both approaches. An important issue is the accuracy of the discretization of the
vertical velocity component v of the variational flow and the avoidance of un-
necessary smearing out of the shock region beyond the normal Rankine-Hugouiot
transition zone if an upright notch is used. For slender bodies, this concern seems
to be relieved by the fact that the shocks are almost normal, since the freestream
Mach number needs to be very close to unity to obtain a supersonic bubble of
any significant size. A study of the relative criticality of this issue for the high
aspect ratio problem is also needed.

, Other sensitivities of the numerical treatment of the interference field are the

proper dimensions of the notch and the definition of the tip of the sheck. For
the two-dimensional airfoil case, Murman numerically investigated the formation
of the shock as the envelope of the characteristics of the second family reflecting
from the sonic line. Because of its steepness, this envelope is poorly defined. The
calculations showed some sensitivity to this definition as well as the location of
the position of the upstream and downstream vertical legs of the notch. More
work is needed to improve this part of the method. From experimentation and an
examination of the pressure profiles as well as the z discretizations, a four point
transition seemed appropriate for the width of the notch for slightly subsonic
tunnel Mach numbers.

In a separately funded AFOSR effort, the structure of the triple point singularity
at the foot of the shock was examined in connection with handling the pertur-
batior Rankine-Hugoniot shock conditions at the notch, particularly at the foot.
As a part of this, Cole and Malmuth in Ref. 38 analyzed a shock position invari-
ance with Mech number discovered by the latter in calculations of the flow over 2
parabolic arc body. More work is needed to understand this phenomenon in free
and confined flows in connection with generalized Lavrentef-Bitsadze models.

Calculations for flow over a parabolic arc body at a freestream Mach number of
.99 indicate that the wall perturbation flow has a very dominant spike localized
sbout the shock region. The preshock influence is very weak compared to the
postshock influence. The shock spike phenomenon to conirol the entire
structure of the interference flow and there is rapid decay away from this region.

Allowing for a perturbation K in the similarity parameter K in the asymptotic
expansions for the perturbation potential provides flexibility in defining minimum
interference or interference-free conditions. A proof of concept has been obtained
in which interference-free conditions for the drag have been been defined for a
perabolic arc body through alteration of the tunnel Mach number or its thickness
ratio using methodology discussed in Section 2.18.
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13.

14.

15.

16.

Lift interference is negligible compared to drag interference for the thickness dom-
inant distinguished limit of the free field slender body basic flow.

Pressure specified boundary conditions include the same mechanism governing
wall interference for high aspect wings as with free jet and solid wall boundary
conditions. Namely, the interaction is still primarily associated with the alteration
of the downwash field on the loaded line (bound vortex) due to the interference of
the walls or interface with the trailing vortex system. The effect of the variable
interface pressures can be handled by & superposition of a tube vortex and a
free jet solution. The tube vortex corresponds to the interfacial pressure data
and is continuous across the wing wake. The sum of both solutions satisfies the
boundary conditions of the complete problem. The tube vortex modifies the
downwash on the loaded line, i.e., the effective angle of attack along the span of
the wing. "

The interference downwash on the loaded line due to the imaging of the trailing
vortex sheet into the walls or interface was analyzed to successfully accomplish
Task 2.0 of the contractual effort. A Green’s function method was developed to
provide an extremely powerful means of obtaining an asymptotically consistent
approximsating sequence for the imaging. Properties of the Bessel functions ap-
pearing in the integral or eigenfunction representation of this Green's function
indicate that even for the transonic case, the downwash field is essentially the
same as that for incompressible flow. In particular, it is the sclution of a two-
dimensional problem in the Treffiz plane infinitely far downstream. This problem
reduces to the interaction of a two-dimensional vortex sheet distributed along the
projection of the wake in the Trefftz plane with the circular projection of the
walls or interface in this plane. Another Green's function which can be obtained
by the Method of Reflection involving inversion in & circle solves this problem.
However, the expansions of the Bessel functions in the expression for the first
Green's function give this interpretation directly. Corresponding information is
needed for choked and slightly supersonic tunnel flows.
!

Under Task 3.0, a code capnb;le of handling high aspect ratio configurations was
developed. As in the slender body code written under Task 1.0, an upright notch
was used to treat the shock in the interference flow. The downwash boundary
conditions developed in Task 2.0 were used for the solver module which deter-
mines the interference field. The code can handle wings with spanwise nonsimilar
sections by use of a normalizing “trick” which reduces the computational problem
to one resembling that for similar sections. Pressure interface boundary condi-
tions can be treated in many situations through the post-processing rather than
the solving step. This feature is another saving in computations! overhead. The
code is quite inexpensive, with practical results readily accessible on VAX6000-
410 type mainframes and clusters. It is ideally suited for use on workstations
such as SUNs and VAXstations. For more utility and geometric applicability, the
effect of sharp kinks in the planform shape needs to be analyzed. A special issue
not present in the slender body cade needed attention in the development of this
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code. It concerned the improvement of the efficiency of the algorithm by use of
convergence acceleration methods. Application produced significant speedup in
the attainment in the psendotime asymptotic for the interference circulation I'y.
To imprave the numerical conditioning as for the slender body code, the far field
singularity was regularized by subtracting it out from the dependent variable ¢,,
converting the homogeneous boundary canditions on the body to inhomogeneous
ones. For the slender body case, a forcing term was added to the equation of
motion with this method. Another ~hange in the formulation under this trans-
formation is e slight modification of the shock jump conditions. Regarding grids,
the main issue relates to adequate clustering at blunt leading edges, shocks and
trailing edges. From the previous discussion, those related fo embedding the
wind tunnel or interface boundaries into the grid are vastly simpler than those
encountered in large—=scale Navier Stokes simulations.

17. Calculations with the high aspect ratio code indicate that the effect of free jet
boundary conditions on slightly subsonic wings is to reduce the lift and make the
wing less supercritical. The shock is weakened and moved upstream. For many
cases, it is envisioned that the change of the spanwise loading tends to follow
the inner solution “strip theory” scaling with the local chord variations as in
incompressible flow. More work is required to help define the role of interference
on the nonlinear interaction between vortex and wave drag which differentiates
transonic flows over these high aspect ratio wings from their low Mach number
counterparts.

18. Preliminary analytical work has been done on the effect of a fuselage on high
aspect ratio wings. It is envisioned that the most important change in this regard
is the interruption of the projection of the trailing vortex system in the Treffiz
plane by the body, providing that the body size is small compared to the wing
span. For such configurations, the interaction of the body thickness with the far
field near the interface and the inner solution does not appear to be significant
in determining the lift interference. However, the effect on drag needs to be
investigated.

19. Two techniques were developed to extend the applicability of the asymptotic
approaches developed to more reslistic viscous environments, These AIM meth-
ods integrate asymptotic techniques with experimental approaches and have the
potential of making WIAC approaches such as the TVM more economical, prac-
tical, fast-response and accurate. For missile configuretions and typical compact
fighter arrangements such as ATF blended wing shapes, the cross-flow gradient
dominant inner deck and the Area Rule for wall interference developed in this
effort indicate that a measurement of the radial variation across the flow of the
pressure or the velocity field can be used to define the effective viscous “soft
body”, as contrasted to the “hard” geometry of the test article. One of the AIM
methods employs this viewpoint to bypass iterative sequences in previous TVM
schemes such as that discussed in Ref. 13 for axisymmetric bodies.

90. In addition to the low to moderate aspect ratio approach of the previous item,
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another AIM method exploiting the role of the Trefftz plane imaging in high
aspect ratio transonic wing wall interference has been developed. Since the 1st
order interference effect is the modification of the incidence of the airfcil sections
along the span, the “soft” circulation distribution can be determined from a
solution of an integral equation, once the downwash or other suitable observable is
measured in the wake behind the wing or on some other convenient control surface.
The deconvolution of the integral equation can be done cn a microcomputer with
simple collocation or other methods. From the soft circulation distribution, an
extrapolation to free field conditions can be obtained by a quadrature ag shown
in Section 4.2.

Many of the previous items enhance our knowledge of the physics of transonic wall
interference and can be used in its efficient pre-test or post—test estimation. In the next
gection, specific recommendations are made for sharpening the wools to provide the wind
tunnel test community with quick response techniques to complement large-scele CFD
approaches.
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8. RECOMMENDATIONS

Section § summarizes progress toward applying combined asymptotic and numerical
methods to transonic wind tunnel interference prediction. Within the contractual effort
reported herein, two computer codes were developed to handle emall and large aspect
ratio configurations in an inviscid flow context. Other theoretical developments have been
described that provide new insights into our understanding of the physics and structure
of interference at near sonic Mach numbers. To extend the applicablity of the methods to
viscous and raore realistic environments, AIM techniques were conceptualized that augment
the theoretical approaches by interacting them with experimental data.

Fromn the observations in the previous section, it appears that it is beneficial to further
develop the tools described. Opportunities exist for further theoretical progress as well
“tuning” the methodology to actual databases. In this connection, other possibilities
involve further experimentation that could be performed in parallel with the methods
development. In contrast to the preponderance of tests that have been performed thus far,
emphasis should be placed on integrating flow field measurements with surface pressure
and force evaluations. Such a procedure would provide an excellent apportunity to validate
the AIM concepts in this report and provide a means to develop cthers that caw strengthen
WIAC methods.

Specifir analytical items that should receive further attention are:
1. Treatment of slightly supersonic flow.
2. Choked and nearly choked cases for slender bodies.

3. Incorporate the asymptotic and numerical methodologies developed herein intc
large-scale computational procedures such as Navier-Stokes, and thin layer
Navier-Stokes codes. Various options in this context are:

3.1 Use combined asymptotic-numerical (CAN) methods to initialize large
scale computational solutions to accelerate convergence to pseudo-time
asymptotics.

3.2 Usze structure of CAN flow to reduce gridding preprocessing effort for
lerge scale implementation from knowledge of solution curvature it
affords.

3.3 Employ “defect” approximation to develop a corrector to first guess by
expreasing large scale solution as an increment on CAN result. Solve for
the defect dependent variable instead of usual primitive variables.

In addition to speeding up the large—scale simulations, these items could result
in reduction of computational costs.

4. Validate the two AIM methods developed under this contract against other solu-
tions and experiment.
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4.1 For both techniques, set up experimental programs in suitable facilities
in which the requisite fow measurements can be made at the same time
pressures and forces are measured, Specific recommendations for such
tests have been made in relation to a survey of existing databases in
Ref. 53.

4.2 Compere the assumed CAN variations in both AIM methods with large
scale computational simulations as another validation and proof of
concept.

4.3 As part of the AIM work for slender bodies, computationally implement
the pressure specified interface theory deacribed in this report.

5. Extend the slender and high aspect ratio codes to handle viscous interaction
effects. The motivation for this approach is to make the simulations developed
under this contract more comparable with the test date. Integral methods such as
Green’s Lag Entrainment Technique could be used to facilitate the introduction
of viscous effects in the CAN simulations. Viscous phenomena can be impor-
tant in transonic interference as shown by recent Calspan studies at AEDC. The
effectiveness and accuracy of the Science Center’s viscous interaction code has
been demonstrated earlier in this report in comparisons with experiment for two—
dimensional flow over a NACA 0012 airfoil. These procedures can be extended to
a three—dimensional context accounting for wind tunnel effects by generalizing the
theories and codes developed in this contract to account for viscous interactions.

6. Computationally implement and more thoroughly develop the theory generalizing
the wing—alone high aspect ratic models to wing-bodiea and kinked planforms.

7. Develop adaptive wall concepts based on AIM technology. In this item, the AIM
advantage of reducing computer overhead would be exploited in developing on-
line closed-loop feedback systems for streamlining the walls. As discussed in
previous sections of this report, the application of the inner expansion avoids
the need for iterative determination of the “soft body” in the application of the
TVM for axisymmetric bodies. This savings could also occur for more realistically
shaped compact fighter and missile test articles.

8. Determine range of applicability of models by comparison with experiment. Par-
ticular items of interest under this heading are:

8.1 Validity of wall height scaling law from asymptotic slender body theory
for interference wave drag and pressures.

8.2 Range of applicability of Area Rule for wall interference — It would be
of interest to determine what constraints exist on section and test article
geometry for validity of the interference Area Rule.

9. The asymptotic models developed in this contract should be integrated with local
asymptotic multideck descriptions of slot and porous wall flows.
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In addition to the foregoing, more theoretical work is required concerning the effect
on interference of bluntness es well as Eft—-dominated flows for the slender body case. For
the high aspect ratio limit, effort is required to study the influence of displacement of the
vortex sheet on results obtained with the planar assumptions of the theory.
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al

A
Aj, B;, Cj, D;
An

Ay
Ay

NOMENCLATURE

constant in Central Layer expression Eq, (2-31)

reduced angle of attack = a/é

coefficients appearing in discretized partial differential equations of
perturbation potential in Eq. (2-58a)

Fourier coefficient

reduced angle of attack of free field

wall perturbation of similarity parameter

wing semispan

far field constant derived in Ref. 29

far field constant derived in Ref 29

body function, and body boundary operator in Eq. (2-100)
scaled span = §/%b = aspect ratio

Fourier coefficient

far field constant derived in Ref. 29 and defined before Eq. (2—47a)

characteristic length scale, local chord

undetermined constant in Eq. (2-18a)

pressure coefficient

defined in Eq. (2-57¢)

undetermined constants in Egs (2-18a,b)

function related to aspect ratio correction in lifting line theory

drag

undetermined constant in Egs. (2-18a,b)

doublet strength in Eq. (4-11b)

Eq.' (2_1)! ¢0..

shock perturbation function

Green’s function

shock shape perturbation function introduced before Eq. (2-43)

dimensional wall height or radius

scaled wall height or radius = §h/c, §'/%h

integral defined in Eq. (3-10b)

integral defined in Eq. {3-10c)

refera to downstream boundary of computational domain

modified Bessel function of first kind

zero setisfying Jp (Fax) =0

refers to top of computational domain

Bessel functions of first kind

transform variable

transonic similarity parameter

modified Bessel functions of third kind

free field similarity parameter

wall perturbation of similarity parameter
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length of body, TSD operator Eq. (2-32)
linear operator of interference flow

surface normal

Fourier coefficient in Eq. (2-26e)

Legendre polynomial

Fourier coefficient in Eq. (2-26a)

functions to be determined by matching in Eqs. {2-26)
transverse radius

scaled transverse radius

polar radius defined in Figs. 2 and 9

right hend side defined in Eq. (2-57b)
dimensionless ares, distribution

dimensional ares distribution

intermediate quantities defined in Eqs. (3-21)
¢z

horizontal end vertical velocity components

do,1_

freestream velocity

¢

¢ﬂ,1'

interface pressure function Eq. (3-4)

function related to wall correction in high aspect ratio theory

outer variables for lifting line theory defined in Eq. (3-6)

dummy variables for z,y, 2

streamwise coordinate

zf \/E’E . and reduced streamwise coordinate defined after Eq. (2-48)

scaled variables for small disturbance theory for large aspect
ratio formulation

scaled variables introduced in Eq. (3-9a)

Bessel functions of second kind

z +iy

¢ +in

constants introduced in Eqgs. (2-27){2-29) to be determiaed by
matchingin Fig. § (i =10,1,2,3,4)

(i =0—4) constants determined by matching in Fig. &

constants introduced in Eqs. (2-27)-{2-29) to be determined by
matching in Fig. b (i=0,1,2,3,4)

same as above

same a8 above

same &3 above

same as above

same as above

same as above

same as above
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Ho same as above

o angle of attack

ap,1,2 constants determined by matching in Eqs. (2-24)

¥ apecific heat ratio, circulation

r circulation

To zeroth order flow circulation of high aspect ratio wing flow
| Y interference flow circulation

§ characteristic thickness ratio of body

A Laplacian

AC, interference increment of pressure coefficient

€n jump sum index, where ¢g =0, ¢ =2,n >0

€1,4.2 gauge functions appearing in Eq. (2-20)

€, dummy variables for z and y

é azimuthal angle in Fig. 2

o,r dummy variables for & and r

é,¢ . polar coordinates based on scaled variables

d,p dummy variables for # and r

w1 (H) gauge function used in Eq. (2-6c)

An zero of secular equation Ji (A, H) =0

Ank scaled zero = jai/p

i H/ B reciprocal of semispan to tunnel height ratio

Hij gwitch parameter defined in Eq. (2-57d)

B1.2 gauge functions appearing in Eq. (2-19)

n(H) gauge functions used in Eq. (2-6b)

&n ¢ dummy variables for z,y,z

T body thickness ratio

) perturbation potential

¢ regularized potential

@ jntermediate representation of perturbation potential in Eq. (4-10a)
¢FF far field asymptotic for interference potential in Eq. (2-44); also in Eq. (3-102b)
" interference perturbation potential

L] velocity potential

@ perturbation potential in wall deck, also outer representatior: of

perturbation potential in confined lifting line theory

w polar angle shown in Fig. 2, relaxation parameter in Eqs. (2-57)
Q2 special functions introduced in Egs. {28)
Subscripts

In various locations in the manuscript, subscripts denote differentiation.

A homogeneous
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p particular
0,1 denotes order of approximation
co denotes freestream quantity
Superscripts
v immediately upstream of shock
D immediately downstream of shock
t Eq. (2-8b)
+ immediately downstream of shock
- immediately upstream of shock
Special Symbols
— overbar refers to dimensional quantity or Fourier transform
X vector cross product
v gradient operator
V. divergence
[ ] jump across shock introduced after Eq. (2-33) or operator dependence
( ) average across shock introduced before Eqs. (2-76)

R

vector dot product
cross flow operator in Eq. (2-62)
bar across integral refers to principal value
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APPENDIX A — MODELS FOR INTERFERENCE FLOW NEAR SHOCKS

04 ! 5C-1386-T
=== Expansion Wave
- Compression Wave
03
foz2l

Sonle Line -
\f 1
L J

-

P

02 * A O £ B

01 |-
I’ ,’ /
,"K’l 4
0 |/’1\(!:|11 ’ 3
04
xi

Region Near Impingament Point
Fig. Al. Detail of shock region.

To obtain a qualitative understanding of the spikelike nature of the interference near
the shock of the basic flow, certain model problems are of interest. Figure Al is a schematic
of the region near the shock wave in the wall interference flow for a slender body. The
equation for the interference perturbation potential ¢, given earlier in this report is

(K = (r+ D0, b1ese = (1 + Dboesn b +2(F1), =0 - (AD)

In (A1), z* refers to an origin displaced from the virtual intersection of the shock and
z axis (body). For convenience in 'what follows, the iranslation

z=2z"—z5 (A2)

is performed where z¥ refers to the virtual intersection point 0. Assuming that the shock
is normal to the body at z§, then the coefficient of the first term in (A1) changes sign in the
small neighborhood of O. Approximate model equations for weak shock layer transitions
near O are

(s8a(a)s,), + 3 (Fdua)y = 0 (43)
(241.), + 3 Fhr)s =0 . (A4)

Equations (A3) and (A4) are generalizations of the Lavrentef-Bitsatze and Tricomi equa-
tions, respectively, for axisymmetric flow. These are, respectively

oEn(z)r., + 3 (Fh1r)s =0 (45)
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21 + 3 (Fb1,) =0 (46)

Expanding the first term in (A3) yields a §(z)¢, term. One possible set of conditions for
a boundary value problem modeling the flow structure near the foot of the shock is

$1 bounded as |z] = oo . (AT)

Other suitable matching conditions as # — oo and 0 with z fixed are required for a properly
posed formulation. .

A full discussion of the appropriate boundary value problem for {(A3) or (A5) is not
intended here. However, the behavior of one class of solutions of (A3) will be discussed.

If separation of variables is used in (A3) by letting
$1 = X(2)R(F)
then

(ssn(;)x‘)' _ __;_(FI;‘ Y __ 22 (A8)
> sgu(z)X" +26(z)X' + N X =0 (A9)
(FR") - 3*R=0 . (A10)

Equation (A10) has
R = Ko()¥) (A11)

as ane possible solution. Equation (A9) models the motion of a linear oscillator with
impulsive positive damping for = > 0 and similar negative damping for z < 0. The delta
function can be simulated by the square pulse

1
f (2} = : T
=0 , |z|> g : (A12b)
Exponentially damped solutions can be used to match with the ¢, field governed by (Al)
a8 ¥ ~+ 0o. The logarithmic behavior of (A11) as ¥ — 0 corresponds to a special singularity
at the root of the shock at point 0. Equation (A9) has been studied for the model delta

function (A12). The second term in (A9) leads to spikes similar to that discussed earlier
in this report.

<z < (A12a)

(T
N,

Another simple plausibility argument for the spike behavior of ¢y, near O is associated
with the assumption that
¢o, 2 8gn(z) asz—0

If the interference perturbs ¢q_ to become

po, =2 (l+e)gn(z—¢) ,
then the dominant interference term behaves like

sgn (z — €) — sgn = = 2e6(x)
which resembles our computed solutions.
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PP IX B — ON GUL Y 8

Figure 97 shows an increase in the rate of reexpansion immediately downstream of
the shock when the latter is weakened. This somewhat counterintuitive behavior can be
understood in terms of the singularity of Transonic Small Disturbance Theory discussed in
Ref. 30. The trends in Fig. 97 are supported by Figs. B1-B4. They represent experiments
and other calculations. The relevance of the experiments is that if the Reynolds number
is sufficiently high, the post-shack expansion resembles that obtained from inviscid pre-
dictions like ours, (Smaller Reynolds numbers will result in post-shock boundary layer
separation and are not germane to this discussion.)

Figure B1 shows experimental data of Blackwell on a 12 percent thick airfoil. Here, a
change in the Reynolds number gives an upsiream shock displacement with an attendant
weakening of the shock. Note the increased reexpansion tendency downstream of the
weaker shock. Figure B2 shows so much increase in the reexpansion that a second shock
forms. Figure B3 taken from E. Kraft’s Ph.D. thesis*, further confirms that weakening
the shock exaggerates the reexpansion Cp blip.

_ Gadd, Oswatitsch, Zierep, and Cole have analyzed this behavior. Inviscidly, the reex-
pansion detail represents a logarithmic singularity immediately downstream of the point
where the shock strikes the airfoil. ¥ z denotes the distance in the freestream direction
measured from the shock impingement point, b subscript represents conditions immediately
behind th:: shock on the airfoil, My, = freestream Mach number, § = airfoil thickness ratio,
K =12Mx aud u is the perturbation velocity in the z direction, then if

w=(r+1u-K, (B1)

the local behavior of the pressure coefficient €, immediately downstream of the impinge-
ment point is given by

C’ = C’. + Az ln(x) ey (32)
where A is the strength of the singulerity given by
_ BF"(%,)6*®
A=——r . (B3)

In Eq. (B3), (o) is proportional to the curvature and Z, represents the z coordi-
nate of the impingement point, messured from the nose. The quantity ws is proportional
to the Mach number jump across the shock, Weakening the shock reduces w, increasing
the reexpansion singularity strength A. For a NACA-0012 airfoil as well as other pro-
files, the weakened shock moves upstream and the magnitude of F"'(Zo) increases from its

* Kraft, EM., “An Integral Equation Method for Boundary Interference in Perforated-
Wall Wind Tunnels at Transonic Speeds,” Ph.D. Thesis, U. of Tennessee, December, 1975.
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downstream value. This has a compounding effect on the increase in A. Data from other
profiles confirm this, but obviously it is an airfoil shape dependent phenomenon.

As an additional verification of these trends, Fig. B4 indicates a comparison of the
singularity intensity A from our Mach .75 elliptic wing case for free field and pressure
boundary conditions (circled points). Also shown are results from Kraft'’s thesis (square
points derived from Fig. B3). They correspond to a NACA-0012 airfoil 2-D flow in the
free field as well as between solid walls for the height to chord ratios shown in Fig. B3.
The quantity A was determined from the numerical solution by a least squares fit of the
solution using Eq. (B2) as the model to fit the solutions. Kraft’s integral equation method
simulates the shock as an instantaneous discontinuity, whereas the finite difference solution
needs a few points to resolve the shock. These aspects as well as the shock fitting process
used in the wall interference perturbation solution are factors affecting the comparison
shown. Another is errors committed in digitizing the data near the impingement point.
In this connection, at least four points were used for the least squares fit. Although these
considerations lead to some minor discrepancies, there is a good correspondence between
the numerically determined acceleration of the flow and the local asymptotic estimate.
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Fig. B1. Reynolds number effect on Fig. B2. Reynolds number effect on
pressure distribution — pressure distribution —
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